scholarly journals Associations between motor unit action potential parameters and surface EMG features

2017 ◽  
Vol 123 (4) ◽  
pp. 835-843 ◽  
Author(s):  
Alessandro Del Vecchio ◽  
Francesco Negro ◽  
Francesco Felici ◽  
Dario Farina

The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDFMU), and amplitude (RMSMU) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R2 = 0.64 ± 0.14), whereas MDFMU and RMSMU showed a weaker relation with RT ( R2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R2 = 0.71), with a strong association to ankle dorsiflexion force ( R2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles.

2006 ◽  
Vol 100 (6) ◽  
pp. 1928-1937 ◽  
Author(s):  
Kevin G. Keenan ◽  
Dario Farina ◽  
Roberto Merletti ◽  
Roger M. Enoka

The purpose of the study was to evaluate the influence of selected physiological parameters on amplitude cancellation in the simulated surface electromyogram (EMG) and the consequences for spike-triggered averages of motor unit potentials derived from the interference and rectified EMG signals. The surface EMG was simulated from prescribed recruitment and rate coding characteristics of a motor unit population. The potentials of the motor units were detected on the skin over a hand muscle with a bipolar electrode configuration. Averages derived from the EMG signal were generated using the discharge times for each of the 24 motor units with lowest recruitment thresholds from a population of 120 across three conditions: 1) excitation level; 2) motor unit conduction velocity; and 3) motor unit synchronization. The area of the surface-detected potential was compared with potentials averaged from the interference, rectified, and no-cancellation EMGs. The no-cancellation EMG comprised motor unit potentials that were rectified before they were summed, thereby preventing cancellation between the opposite phases of the potentials. The percent decrease in area of potentials extracted from the rectified EMG was linearly related to the amount of amplitude cancellation in the interference EMG signal, with the amount of cancellation influenced by variation in excitation level and motor unit conduction velocity. Motor unit synchronization increased potentials derived from both the rectified and interference EMG signals, although cancellation limited the increase in area for both potentials. These findings document the influence of amplitude cancellation on motor unit potentials averaged from the surface EMG and the consequences for using the procedure to characterize motor unit properties.


2002 ◽  
Vol 93 (5) ◽  
pp. 1753-1763 ◽  
Author(s):  
Dario Farina ◽  
Luigi Fattorini ◽  
Francesco Felici ◽  
Giancarlo Filligoi

Amplitude and frequency content of the surface electromyographic (EMG) signal reflect central and peripheral modifications of the neuromuscular system. Classic surface EMG spectral variables applied to assess muscle functions are the centroid and median power spectral frequencies. More recently, nonlinear tools have been introduced to analyze the surface EMG; among them, the recurrence quantification analysis (RQA) was shown to be particularly promising for the detection of muscle status changes. The purpose of this work was to analyze the effect of motor unit short-term synchronization and conduction velocity (CV) on EMG spectral variables and two variables extracted by RQA, the percentage of recurrence (%Rec) and determinism (%Det). The study was performed on the basis of a simulation model, which allowed changing the degree of synchronization and mean CV of a number of motor units, and of an experimental investigation of the surface EMG signal properties detected during high-force-level isometric fatiguing contractions of the biceps brachii muscle. Simulations and experimental results were largely in agreement and show that 1) spectral variables, %Rec, and %Det are influenced by CV and degree of synchronization; 2) spectral variables are highly correlated with %Det ( R = −0.95 in the simulations and −0.78 and −0.75 for the initial values and normalized slopes, respectively, in the experimental signals), and thus the information they provide on muscle properties is basically the same; and 3) variations of %Det and %Rec in response to changes in muscle properties are significantly larger than the variations of spectral variables. This study validates RQA as a means for fatigue assessment with potential advantages (such as the higher sensitivity to changes of muscle status) with respect to the classic spectral analysis.


2014 ◽  
Vol 112 (7) ◽  
pp. 1685-1691 ◽  
Author(s):  
Christopher J. Dakin ◽  
Brian H. Dalton ◽  
Billy L. Luu ◽  
Jean-Sébastien Blouin

Rectification of surface electromyographic (EMG) recordings prior to their correlation with other signals is a widely used form of preprocessing. Recently this practice has come into question, elevating the subject of EMG rectification to a topic of much debate. Proponents for rectifying suggest it accentuates the EMG spike timing information, whereas opponents indicate it is unnecessary and its nonlinear distortion of data is potentially destructive. Here we examine the necessity of rectification on the extraction of muscle responses, but for the first time using a known oscillatory input to the muscle in the form of electrical vestibular stimulation. Participants were exposed to sinusoidal vestibular stimuli while surface and intramuscular EMG were recorded from the left medial gastrocnemius. We compared the unrectified and rectified surface EMG to single motor units to determine which method best identified stimulus-EMG coherence and phase at the single-motor unit level. Surface EMG modulation at the stimulus frequency was obvious in the unrectified surface EMG. However, this modulation was not identified by the fast Fourier transform, and therefore stimulus coherence with the unrectified EMG signal failed to capture this covariance. Both the rectified surface EMG and single motor units displayed significant coherence over the entire stimulus bandwidth (1–20 Hz). Furthermore, the stimulus-phase relationship for the rectified EMG and motor units shared a moderate correlation ( r = 0.56). These data indicate that rectification of surface EMG is a necessary step to extract EMG envelope modulation due to motor unit entrainment to a known stimulus.


1982 ◽  
Vol 47 (5) ◽  
pp. 797-809 ◽  
Author(s):  
P. J. Cordo ◽  
W. Z. Rymer

1. Subdivided portions of the cut ventral root innervation of the soleus muscle were electrically stimulated in 14 anesthetized cats. The stimulus trains imposed on these nerves simulated the recruitment and rate-modulation patterns of single motor units recorded during stretch-reflex responses in decerebrate preparations. Each activation pattern was evaluated for its ability to prevent muscle yield. 2. Three basic stimulus patterns, recruitment, step increases in stimulus rate, and doublets were imposed during the course of ramp stretches applied over a wide range of velocities. The effect of each stimulus pattern on muscle force was compared to the force output recorded without stretch-related recruitment or rate modulation. 3. Motor-unit recruitment was found to be most effective in preventing yield during muscle stretch. Newly recruited motor units showed no evidence of yielding for some 250 ms following activation, at which time muscle stiffness declined slightly. This time-dependent resistance to yield was observed regardless of whether the onset of the neural stimulus closely preceded or followed stretch onset. 4. Step increases in stimulus rate arising shortly after stretch onset did not prevent the occurrence of yield at most stretch velocities, but did augment muscle stiffness later in the stretch. Doublets in the stimulus train were found to augment muscle stiffness only when they occurred in newly recruited motor units. 5. These results suggest that at low or moderate initial forces, the prevention of yield in lengthening, reflexively intact muscle results primarily from rapid motor-unit recruitment. To a lesser extent, the spring-like character of the stretch-reflex response also derives from step increases in firing rate of motor units active before stretch onset and doublets in units recruited during the course of stretch. Smooth rate increases appear to augment muscle force later in the course of the reflex response.


2018 ◽  
Vol 125 (5) ◽  
pp. 1404-1410 ◽  
Author(s):  
A. Del Vecchio ◽  
A. Úbeda ◽  
M. Sartori ◽  
J. M. Azorín ◽  
F. Felici ◽  
...  

Force is generated by muscle units according to the neural activation sent by motor neurons. The motor unit is therefore the interface between the neural coding of movement and the musculotendinous system. Here we propose a method to accurately measure the latency between an estimate of the neural drive to muscle and force. Furthermore, we systematically investigate this latency, which we refer to as the neuromechanical delay (NMD), as a function of the rate of force generation. In two experimental sessions, eight men performed isometric finger abduction and ankle dorsiflexion sinusoidal contractions at three frequencies and peak-to-peak amplitudes {0.5, 1, and 1.5 Hz; 1, 5, and 10 of maximal force [%maximal voluntary contraction (MVC)]}, with a mean force of 10% MVC. The discharge timings of motor units of the first dorsal interosseous (FDI) and tibialis anterior (TA) muscle were identified by high-density surface EMG decomposition. The neural drive was estimated as the cumulative discharge timings of the identified motor units. The neural drive predicted 80 ± 0.4% of the force fluctuations and consistently anticipated force by 194.6 ± 55 ms (average across conditions and muscles). The NMD decreased nonlinearly with the rate of force generation ( R2 = 0.82 ± 0.07; exponential fitting) with a broad range of values (from 70 to 385 ms) and was 66 ± 0.01 ms shorter for the FDI than TA ( P < 0.001). In conclusion, we provided a method to estimate the delay between the neural control and force generation, and we showed that this delay is muscle-dependent and is modulated within a wide range by the central nervous system. NEW & NOTEWORTHY The motor unit is a neuromechanical interface that converts neural signals into mechanical force with a delay determined by neural and peripheral properties. Classically, this delay has been assessed from the muscle resting level or during electrically elicited contractions. In the present study, we introduce the neuromechanical delay as the latency between the neural drive to muscle and force during variable-force contractions, and we show that it is broadly modulated by the central nervous system.


Motor Control ◽  
2016 ◽  
Vol 20 (1) ◽  
pp. 70-86 ◽  
Author(s):  
Matt S. Stock ◽  
Brennan J. Thompson

We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.


1999 ◽  
Vol 82 (1) ◽  
pp. 501-504 ◽  
Author(s):  
R. H. Westgaard ◽  
C. J. de Luca

We examined the activity pattern of low-threshold motor units in the human trapezius muscle during contractions of 10 min duration. Three procedures were applied in sequence: 1) static contraction controlled by maintaining a constant low level of the surface electromyogram (EMG)-detected root-mean-square signal, 2) a manipulation task with mental concentration, and 3) copying a text on a word processor. A quadrifilar fine-wire electrode was used to record single motor unit activity. Simultaneously, surface electrodes recorded the surface EMG signal. During these contractions, low-threshold motor units showed periods of inactivity and were substituted by motor units of higher recruitment threshold. This phenomenon was not observed during the first few minutes of the contraction. In several cases the substitution process coincided with a short period of inactivity in the surface EMG pattern. Substitution was observed in five of eight experiments. These observations may be explained by a time-variant recruitment threshold of motor units, sensitive to their activation history and temporal variation in the activity patterns. We speculate that the substitution phenomenon protects motor units in postural muscles from excessive fatigue when there is a demand for sustained low-level muscle activity.


1990 ◽  
Vol 68 (3) ◽  
pp. 1177-1185 ◽  
Author(s):  
M. Solomonow ◽  
C. Baten ◽  
J. Smit ◽  
R. Baratta ◽  
H. Hermens ◽  
...  

The isolated contributions of motor unit recruitment and firing rate variations to the median frequency of the electromyogram's power density spectrum were determined. Orderly stimulation of the cat gastrocnemius motor units via nerve electrodes gave rise to linearly increasing median frequency regardless of the action potential firing rate of the active motor units. Increase in the discharge rate of all the motor units resulted in nearly constant median frequency. It was concluded that the increasing average conduction velocity during motor unit recruitment is the major contributor to variations in the electromyogram median frequency. The possibility of using the median frequency as the index to identify the recruitment control strategies employed by various muscles during increasing force contraction is suggested.


2021 ◽  
Vol 18 (174) ◽  
pp. 20200765
Author(s):  
Adrian K. M. Lai ◽  
Taylor J. M. Dick ◽  
Andrew A. Biewener ◽  
James M. Wakeling

The nervous system is faced with numerous strategies for recruiting a large number of motor units within and among muscle synergists to produce and control body movement. This is challenging, considering multiple combinations of motor unit recruitment may result in the same movement. Yet vertebrates are capable of performing a wide range of movement tasks with different mechanical demands. In this study, we used an experimental human cycling paradigm and musculoskeletal simulations to test the theory that a strategy of prioritizing the minimization of the metabolic cost of muscle contraction, which improves mechanical efficiency, governs the recruitment of motor units within a muscle and the coordination among synergist muscles within the limb. Our results support our hypothesis, for which measured muscle activity and model-predicted muscle forces in soleus—the slower but stronger ankle plantarflexor—is favoured over the weaker but faster medial gastrocnemius (MG) to produce plantarflexor force to meet increased load demands. However, for faster-contracting speeds induced by faster-pedalling cadence, the faster MG is favoured. Similar recruitment patterns were observed for the slow and fast fibres within each muscle. By contrast, a commonly used modelling strategy that minimizes muscle excitations failed to predict force sharing and known physiological recruitment strategies, such as orderly motor unit recruitment. Our findings illustrate that this common strategy for recruiting motor units within muscles and coordination between muscles can explain the control of the plantarflexor muscles across a range of mechanical demands.


2018 ◽  
Vol 124 (4) ◽  
pp. 1071-1079 ◽  
Author(s):  
Eduardo Martinez-Valdes ◽  
Francesco Negro ◽  
Deborah Falla ◽  
Alessandro Marco De Nunzio ◽  
Dario Farina

Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10, 30, 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL ( P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM ( P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose, we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL ( P < 0.001), and this difference explained most of the differences in EMG amplitude between the two muscles (~63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW & NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles.


Sign in / Sign up

Export Citation Format

Share Document