Computer simulation of the steady-state input-output function of the cat medial gastrocnemius motoneuron pool

1991 ◽  
Vol 65 (4) ◽  
pp. 952-967 ◽  
Author(s):  
C. J. Heckman ◽  
M. D. Binder

1. A pool of 100 simulated motor units was constructed in which the steady-state neural and mechanical properties of the units were very closely matched to the available experimental data for the cat medial gastrocnemius motoneuron pool and muscle. The resulting neural network generated quantitative predictions of whole system input-output functions based on the single unit data. The results of the simulations were compared with experimental data on normal motor system behavior in humans and animals. 2. We considered only steady-state, isometric conditions. All motoneurons received equal proportions of the synaptic input, and no feedback loops were operative. Thus the intrinsic properties of the motor unit population alone determined the form of the system input-output function. Expressing the synaptic input in terms of effective synaptic current allowed the simulated motoneuron input-output functions to be specified by well-known firing rate-injected current relations. The motor unit forces were determined from standard motor unit force-frequency relations, and the system output at any input level was assumed to be the linear sum of the forces of the active motor units. 3. The steady-state input-output function of the simulated motoneuron pool had a roughly sigmoidal shape that was quite different from those derived from previous recruitment models, which did not incorporate frequency modulation. Frequency modulation in combination with the skewed distribution of thresholds (low values much more frequent than high) restricted upward curvature to low input levels, whereas frequency modulation alone was responsible for the final gradual approach to the maximum force output. 4. Sensitivity analyses were performed to assess the importance of several assumptions that were required to deal with gaps and uncertainties in the available experimental data. The shape of the input-output function was not critically dependent on any of these assumptions, including those specifying linear summation of inputs and outputs. 5. A key assumption of the model was that systematic variance in motor unit properties was much more important than random variance for determining the input-output function. Addition of random variance via Monte Carlo techniques showed that this assumption was correct. These results suggest that the output of a motoneuron pool should be quite tolerant of random variance in the distribution of synaptic inputs and yet substantially altered by any systematic differences, such as unequal distribution of inputs among different motor unit types.(ABSTRACT TRUNCATED AT 400 WORDS)

1994 ◽  
Vol 71 (5) ◽  
pp. 1727-1739 ◽  
Author(s):  
C. J. Heckman

1. The effects of different types of synaptic input on the steady-state input-output relations of the mammalian motoneuron pool were investigated by the use of computer simulations. The properties of the simulated motor units and their synaptic inputs were based as closely as possible on the experimental data from studies in the cat hindlimb. 2. Three basic types of synaptic input systems were simulated: postsynaptic, presynaptic, and neuromodulatory. The effects of these inputs on three aspects of the system input-output structure were studied: gain, precision, and motor-unit type utilization. 3. The gain analyses were based on a simulation of the steady-state homonymous Ia input. The gain of this steady-state Ia “reflex” was found to be determined largely by the slope of the pool input-output function. Precision was evaluated in two ways, from the amplitudes of the quantal steps due to motor-unit recruitment and from the sensitivity of the input-output function to noise. The pattern of motor-unit type utilization allowed indirect assessment of fatigue resistance: the larger the percentage of force generated by FF units, the lower the fatigue resistance. 4. A uniformly distributed input (i.e., one that generates equal input in all motoneurons) generates outputs that are solely determined by the intrinsic properties of the motor units. Thus the gain, precision, and motor-unit type patterns generated by a uniform input were used as the basis with which the effects of all other input systems were compared. 5. Postsynaptic excitatory inputs with nonuniform distributions within the pool did influence gain. The greatest effect was the increase mediated by the rubrospinal excitatory input (27% increase at 30% of maximal force). However, this input also greatly decreased both fatigue resistance and precision, due to increased activation of FF units at low force levels. In contrast, the Ia input slightly decreased gain (12% decrease at 30% of maximum force) while slightly increasing fatigue resistance and precision. 6. The simulated neuromodulatory input was based on the monoaminergic reticulospinal effect on motoneurons. Gain was generally increased by the monoaminergic input. However, the magnitude of the increase strongly depended on whether the monoaminergic effects were largest on S units (giving a 20% increase at 30% of maximum force), equal on all types (52%), or largest on FF units (102%). Presynaptic inhibition reduced gain with no effect whatsoever on fatigue resistance or precision. 7. Therefore Ia reflex gain was modifiable by all three types of input: postsynaptic, presynaptic, and neuromodulatory.(ABSTRACT TRUNCATED AT 400 WORDS)


2017 ◽  
Vol 117 (3) ◽  
pp. 1171-1184 ◽  
Author(s):  
Randall K. Powers ◽  
Charles J. Heckman

Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire. NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs.


2014 ◽  
Vol 112 (7) ◽  
pp. 1685-1691 ◽  
Author(s):  
Christopher J. Dakin ◽  
Brian H. Dalton ◽  
Billy L. Luu ◽  
Jean-Sébastien Blouin

Rectification of surface electromyographic (EMG) recordings prior to their correlation with other signals is a widely used form of preprocessing. Recently this practice has come into question, elevating the subject of EMG rectification to a topic of much debate. Proponents for rectifying suggest it accentuates the EMG spike timing information, whereas opponents indicate it is unnecessary and its nonlinear distortion of data is potentially destructive. Here we examine the necessity of rectification on the extraction of muscle responses, but for the first time using a known oscillatory input to the muscle in the form of electrical vestibular stimulation. Participants were exposed to sinusoidal vestibular stimuli while surface and intramuscular EMG were recorded from the left medial gastrocnemius. We compared the unrectified and rectified surface EMG to single motor units to determine which method best identified stimulus-EMG coherence and phase at the single-motor unit level. Surface EMG modulation at the stimulus frequency was obvious in the unrectified surface EMG. However, this modulation was not identified by the fast Fourier transform, and therefore stimulus coherence with the unrectified EMG signal failed to capture this covariance. Both the rectified surface EMG and single motor units displayed significant coherence over the entire stimulus bandwidth (1–20 Hz). Furthermore, the stimulus-phase relationship for the rectified EMG and motor units shared a moderate correlation ( r = 0.56). These data indicate that rectification of surface EMG is a necessary step to extract EMG envelope modulation due to motor unit entrainment to a known stimulus.


1987 ◽  
Vol 57 (4) ◽  
pp. 1227-1245 ◽  
Author(s):  
R. C. Foehring ◽  
G. W. Sypert ◽  
J. B. Munson

We tested whether the muscle innervated may influence the expression of motoneuron electrical properties. Properties of individual motor units were examined following cross-reinnervation (X-reinnervation) of cat lateral gastrocnemius (LG) and soleus muscles by the medial gastrocnemius (MG) nerve. We examined animals at two postoperative times: 9-10 wk (medX) and 9-11 mo (longX). For comparison, normal LG and soleus motoneuron properties were also studied. Motor units were classified on the basis of their contractile responses as fast contracting fatigable, fast intermediate fast contracting fatigue resistant, and slow types FF, FI, FR, or S, respectively) (9, 21). Motoneuron electrical properties (rheobase, input resistance, axonal conduction velocity, afterhyperpolarization) were measured. After 9-11 mo, MG motoneurons that innervated LG muscle showed recovery of electrical properties similar to self-regenerated MG motoneurons. The relationships between motoneuron electrical properties were largely similar to self-regenerated MG. For MG motoneurons that innervated LG, motoneuron type (65) predicted motor-unit type in 74% of cases. LongX-soleus motoneurons differed from longX-LG motoneurons or self-regenerated MG motoneurons in mean values for motoneuron electrical properties. The differences in overall means reflected the predominance of type S motor units. The relationships between motoneuron electrical properties were also different than in self-regenerated MG motoneurons. In all cases, the alterations were in the direction of properties of type S units, and the relationship between normal soleus motoneurons and their muscle units. Within motor-unit types, the mean values were typical for that type in self-regenerated MG. Motoneuron type (65) was a fairly strong predictor of motor-unit type in longX soleus. MG motoneurons that innervated soleus displayed altered values for axonal conduction velocity, rheobase, and input resistance, which could indicate incomplete recovery from the axotomized state. However, although mean afterhyperpolarization (AHP) half-decay time was unaltered by axotomy (25), this parameter was significantly lengthened in MG motoneurons that innervated soleus muscle. There were, however, individual motoneuron-muscle-unit mismatches, which suggested that longer mean AHP half-decay time may also be due to incomplete recovery of a subpopulation of motoneurons. Those MG motoneurons able to specify soleus muscle-fiber type exhibited motoneuron electrical properties typical of that same motoneuron type in self-regenerated MG.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 76 (6) ◽  
pp. 2663-2671 ◽  
Author(s):  
L. J. Einsiedel ◽  
A. R. Luff

The aim of the study was to determine whether increased motoneuron activity induced by treadmill walking would alter the extent of motoneuron sprouting in the partially denervated rat medial gastrocnemius muscle. An extensive partial denervation was effected by unilateral section of the L5 ventral root, and it is very likely that all units remaining in the medial gastrocnemius were used in treadmill walking. Rats were trained for 1.5 h/day and after 14 days were walking at least 1 km/day. Motor unit characteristics were determined 24 days after the partial denervation and were compared with units from partially denervated control (PDC) animals and with units from normal (control) animals. In PDC rats, force developed by slow, fast fatigue-resistant, and fast intermediate-fatigable motor units increased substantially compared with control animals; that of fast-fatigable units did not increase. In partially denervated exercised animals, force developed by slow and fast-fatigue-resistant units showed no further increase, but fast-intermediate- and fast-fatigable units showed significant increases compared with those in PDC animals. The changes in force were closely paralleled by changes in innervation ratios. We concluded that neuronal activity is an important factor in determining the rate of motoneuron sprouting.


1993 ◽  
Vol 70 (5) ◽  
pp. 1827-1840 ◽  
Author(s):  
C. J. Heckman ◽  
M. D. Binder

1. The effects of four different synaptic input systems on the recruitment order within a mammalian motoneuron pool were investigated using computer simulations. The synaptic inputs and motor unit properties in the model were based as closely as possible on the available experimental data for the cat medial gastrocnemius pool and muscle. Monte Carlo techniques were employed to add random variance to the motor unit thresholds and forces and to sample the resulting recruitment orders. 2. The effects of the synaptic inputs on recruitment order depended on how they modified the range of recruitment thresholds established by differences in the intrinsic current thresholds of the motoneurons. Application of a uniform synaptic input to the pool (i.e., distributed equally to all motoneurons) resulted in a recruitment sequence that was quite stable even with the addition of large amounts of random variance. With 50% added random variance, the recruitment reversals did not exceed 8%. 3. The simulated monosynaptic input from homonymous Ia afferent fibers generated a twofold expansion of the range of recruitment thresholds beyond that attributed to the differences in the intrinsic current thresholds. The Ia input generated a small reduction in the number of recruitment reversals due to random variance (6% reversals at 50% random variance). The simulated monosynaptic vestibulospinal input generated a twofold compression of the range of recruitment thresholds that exerted a modest increase in the number of recruitment reversals (12% reversals at 50% random variance). 4. In comparison with the modest effects of the two monosynaptic inputs, the simulated oligosynpatic rubrospinal excitatory input exerted a nine-fold compression in the recruitment threshold range that resulted in a recruitment sequence that was highly sensitive to random variance. With 50% added random variance, the sequence became nearly random (40% reversals). 5. Reciprocal Ia inhibition was simulated by a uniform distribution within the pool, but its effects on recruitment order were highly dependent on the distribution of the excitatory input. Reciprocal inhibition exerted only minor effects on recruitment order when combined with the Ia or vestibulospinal inputs. However, when the excitatory drive was supplied by the rubrospinal input, even small amounts of reciprocal inhibition were sufficient to completely reverse the normal recruitment sequence. 6. The simulated monosynaptic Ia input was highly effective in compensating for the disruptive effects of rubrospinal excitation on recruitment order. Even a small Ia bias combined with the rubrospinal excitation was sufficient to halve the effects of random variance and to restore the normal recruitment sequence in the presence of rather large amounts of reciprocal inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 205 (3) ◽  
pp. 359-369 ◽  
Author(s):  
James M. Wakeling ◽  
Motoshi Kaya ◽  
Genevieve K. Temple ◽  
Ian A. Johnston ◽  
Walter Herzog

SUMMARY Motor units are the functional units of muscle contraction in vertebrates. Each motor unit comprises muscle fibres of a particular fibre type and can be considered as fast or slow depending on its fibre-type composition. Motor units are typically recruited in a set order, from slow to fast, in response to the force requirements from the muscle. The anatomical separation of fast and slow muscle in fish permits direct recordings from these two fibre types. The frequency spectra from different slow and fast myotomal muscles were measured in the rainbow trout Oncorhynchus mykiss. These two muscle fibre types generated distinct low and high myoelectric frequency bands. The cat paw-shake is an activity that recruits mainly fast muscle. This study showed that the myoelectric signal from the medial gastrocnemius of the cat was concentrated in a high frequency band during paw-shake behaviour. During slow walking, the slow motor units of the medial gastrocnemius are also recruited, and this appeared as increased muscle activity within a low frequency band. Therefore, high and low frequency bands could be distinguished in the myoelectric signals from the cat medial gastrocnemius and probably corresponded, respectively, to fast and slow motor unit recruitment. Myoelectric signals are resolved into time/frequency space using wavelets to demonstrate how patterns of motor unit recruitment can be determined for a range of locomotor activities.


1996 ◽  
Vol 75 (1) ◽  
pp. 51-59 ◽  
Author(s):  
K. E. Tansey ◽  
A. K. Yee ◽  
B. R. Botterman

1. The aim of this study was to examine the extent of muscle-unit force modulation due to motoneuron firing-rate variation in type-identified motor units of the cat medial gastrocnemius (MG) muscle, and to investigate the contribution of muscle-unit force modulation to whole-muscle force regulation. The motoneuron discharge patterns recorded from 8 pairs of motor units during 12 smoothly graded muscle contractions evoked by stimulation of the mesencephalic locomotor region (MLR) were used to reactivate those units in isolation to estimate what their force profiles would have been like during the evoked whole-muscle contractions. 2. For most motor units, muscle-unit force modulation was similar to motoneuron firing-rate modulation, in that muscle-unit force increased over a limited range (120-600 g) of increasing whole-muscle tension and was then maintained at a near maximal (> 70%) output level as muscle force continued to rise. Most muscle units also decreased their force outputs over a slightly larger range of declining whole-muscle force before relaxing. This second finding was best explained by the counterclockwise hysteresis recorded in the motor units' frequency-tension (f-t) relationships. 3. In those instances when whole-muscle force fluctuated just above the recruitment threshold of a motor unit, a substantial percentage (10-25%) of the change in whole-muscle force could be accounted for by force modulation in that motor unit alone. This finding suggested that few motor units in the pool were simultaneously simultaneously undergoing force modulation. To evaluate this possibility, the extent of parallel muscle-unit force modulation within the 8 pairs of simultaneously active motor units was evaluated. As with parallel motoneuron firing-rate modulation, the extent of parallel muscle-unit force modulation was limited to unit pairs of the same physiological type and recruitment threshold. In several instances, pairs of motor units displayed parallel motoneuron firing-rate modulation but did not show parallel muscle-unit force modulation because of the nature of the motor units' f-t relationships. 4. The limited extent of parallel muscle-unit force modulation seen in these experiments implies that the major strategy for force modulation in the cat MG muscle, involving contractions estimated to reach 30-40% of maximum, may be motor-unit recruitment rather than motor-unit firing-rate variation with resulting force modulation. Given, however, that the majority of motor units are already recruited at these output levels (< 40%), it is proposed that motor-unit firing-rate variation with resulting force modulation may take over as the major muscle force modulating strategy at higher output levels.


1991 ◽  
Vol 66 (4) ◽  
pp. 1127-1138 ◽  
Author(s):  
T. C. Cope ◽  
B. D. Clark

1. Recruitment order was studied in pairs of motor units of the medial gastrocnemius (MG) muscle of decerebrate cats with the use of dual microelectrode recording from intact ventral root filaments. Excitation was provided by stretch of MG, stretch of synergists [lateral gastrocnemius (LG), plantaris (PL), and soleus (SOL) muscles] or electrical stimulation of the caudal cutaneous sural (CCS) nerve. Motor units were characterized by axonal conduction velocity (CV), tetanic tension (Pmax), twitch contraction time (CT), and fatigue index (FI). 2. Consistent with the recruitment pattern described by others, most often in relation to either CV or Pmax, the first unit of a pair to be recruited by MG stretch was typically the one with the lower CV and Pmax, and the higher FI and CT. The proportion of pairs that agreed in rank order of each property and recruitment order was as follows: for CT, 94%; for CV, 87%; for Pmax, 84%; and for FI, 75%. With a single marginal exception (CT vs. FI), no motor-unit property proved to be significantly better than the others at predicting recruitment (G test; P greater than 0.05). 3. In all 11 tested pairs containing one slow (type S) and one fast (type F) unit, the S was more easily recruited by stretch. Type F units divided into groups with high (type FR), low (type FF), and intermediate (type FInt) values for FI were recruited in order from FR to FInt to FF in 8/11 pairs. Thus our findings were similar to earlier demonstrations that recruitment proceeds in order by type. 4. Stretch of MG synergists usually recruited units in the same order as MG stretch. In two S-S pairs, recruitment order was switched with synergist stretch. 5. Stimulation of the CCS nerve was generally excitatory to the MG units sampled. Most unit pairs were recruited by CCS stimulation in the same order as by MG stretch, but, for 6 of 39 pairs, CCS stimulation switched the order produced by stretch. Thus, whereas sural afferent input can preferentially excite some units over others as suggested by Kanda et al., that effect is not widespread or selective for unit type under these conditions. 6. Assuming that all MG motor units cooperate as a single functional pool in homonymous stretch reflexes, we support others in concluding that a motoneuron's recruitment threshold is not strictly determined by its size. However, our data do not distinguish other schemes that predict recruitment order more accurately than the size principle.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 70 (4) ◽  
pp. 1433-1439 ◽  
Author(s):  
B. D. Clark ◽  
S. M. Dacko ◽  
T. C. Cope

1. An attempt was made to repeat the observation that cutaneous input to the cat medial gastrocnemius (MG) muscle sometimes had the differential effect of inhibiting motoneurons with slow axonal conduction velocity while simultaneously exciting others with fast conduction velocity. Dual microelectrode recording from intact ventral root filaments was used to study the effects of cutaneous inputs on recruitment order and on firing frequency of physiologically characterized MG motor units in decerebrate cats. Motor responses to pinch of the skin over the lateral surface of the ankle as well as electrical stimulation of the caudal cutaneous sural (CCS) nerve were contrasted with the responses to static muscle stretch as well as muscle vibration. 2. In contrast to the prediction, recruitment order in pairwise tests was the same for skin pinch or CCS stimulation as it was for MG stretch or vibration in all 32 tested pairs of motor units. This sample included seven pairs comprising one slow-twitch (S) and one fast-twitch motor unit, where the predicted reversal of recruitment should have been most apparent. Regardless of the source of excitation, recruitment of motor units of the MG was consistent with Henneman's size principle in approximately 90% of trials. 3. Skin pinch increased the firing rate of 30 of 32 individual motor units previously activated by stretch or vibration, including 7 slow-twitch units. In the remaining two units, skin pinch transiently (100-400 ms) slowed the firing of an S unit in 11 of 13 vibration + pinch trials. The other unit (type unknown) showed one or two retarded spikes in each of four vibration + pinch trials. In three S units, including the lone inhibitable unit and two others that were only excited by skin pinch, there was a significant positive rank correlation between change in unit firing frequency and change in soleus integrated electromyographic activity.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document