Contributions of motor-unit recruitment and rate modulation of compensation for muscle yielding

1982 ◽  
Vol 47 (5) ◽  
pp. 797-809 ◽  
Author(s):  
P. J. Cordo ◽  
W. Z. Rymer

1. Subdivided portions of the cut ventral root innervation of the soleus muscle were electrically stimulated in 14 anesthetized cats. The stimulus trains imposed on these nerves simulated the recruitment and rate-modulation patterns of single motor units recorded during stretch-reflex responses in decerebrate preparations. Each activation pattern was evaluated for its ability to prevent muscle yield. 2. Three basic stimulus patterns, recruitment, step increases in stimulus rate, and doublets were imposed during the course of ramp stretches applied over a wide range of velocities. The effect of each stimulus pattern on muscle force was compared to the force output recorded without stretch-related recruitment or rate modulation. 3. Motor-unit recruitment was found to be most effective in preventing yield during muscle stretch. Newly recruited motor units showed no evidence of yielding for some 250 ms following activation, at which time muscle stiffness declined slightly. This time-dependent resistance to yield was observed regardless of whether the onset of the neural stimulus closely preceded or followed stretch onset. 4. Step increases in stimulus rate arising shortly after stretch onset did not prevent the occurrence of yield at most stretch velocities, but did augment muscle stiffness later in the stretch. Doublets in the stimulus train were found to augment muscle stiffness only when they occurred in newly recruited motor units. 5. These results suggest that at low or moderate initial forces, the prevention of yield in lengthening, reflexively intact muscle results primarily from rapid motor-unit recruitment. To a lesser extent, the spring-like character of the stretch-reflex response also derives from step increases in firing rate of motor units active before stretch onset and doublets in units recruited during the course of stretch. Smooth rate increases appear to augment muscle force later in the course of the reflex response.

1996 ◽  
Vol 75 (1) ◽  
pp. 51-59 ◽  
Author(s):  
K. E. Tansey ◽  
A. K. Yee ◽  
B. R. Botterman

1. The aim of this study was to examine the extent of muscle-unit force modulation due to motoneuron firing-rate variation in type-identified motor units of the cat medial gastrocnemius (MG) muscle, and to investigate the contribution of muscle-unit force modulation to whole-muscle force regulation. The motoneuron discharge patterns recorded from 8 pairs of motor units during 12 smoothly graded muscle contractions evoked by stimulation of the mesencephalic locomotor region (MLR) were used to reactivate those units in isolation to estimate what their force profiles would have been like during the evoked whole-muscle contractions. 2. For most motor units, muscle-unit force modulation was similar to motoneuron firing-rate modulation, in that muscle-unit force increased over a limited range (120-600 g) of increasing whole-muscle tension and was then maintained at a near maximal (> 70%) output level as muscle force continued to rise. Most muscle units also decreased their force outputs over a slightly larger range of declining whole-muscle force before relaxing. This second finding was best explained by the counterclockwise hysteresis recorded in the motor units' frequency-tension (f-t) relationships. 3. In those instances when whole-muscle force fluctuated just above the recruitment threshold of a motor unit, a substantial percentage (10-25%) of the change in whole-muscle force could be accounted for by force modulation in that motor unit alone. This finding suggested that few motor units in the pool were simultaneously simultaneously undergoing force modulation. To evaluate this possibility, the extent of parallel muscle-unit force modulation within the 8 pairs of simultaneously active motor units was evaluated. As with parallel motoneuron firing-rate modulation, the extent of parallel muscle-unit force modulation was limited to unit pairs of the same physiological type and recruitment threshold. In several instances, pairs of motor units displayed parallel motoneuron firing-rate modulation but did not show parallel muscle-unit force modulation because of the nature of the motor units' f-t relationships. 4. The limited extent of parallel muscle-unit force modulation seen in these experiments implies that the major strategy for force modulation in the cat MG muscle, involving contractions estimated to reach 30-40% of maximum, may be motor-unit recruitment rather than motor-unit firing-rate variation with resulting force modulation. Given, however, that the majority of motor units are already recruited at these output levels (< 40%), it is proposed that motor-unit firing-rate variation with resulting force modulation may take over as the major muscle force modulating strategy at higher output levels.


1996 ◽  
Vol 75 (1) ◽  
pp. 38-50 ◽  
Author(s):  
K. E. Tansey ◽  
B. R. Botterman

1. The aim of this study was to examine the nature of motoneuron firing-rate modulation in type-identified motor units during smoothly graded contractions of the cat medial gastrocnemius (MG) muscle evoked by stimulation of the mesencephalic locomotor region (MLR). Motoneuron discharge patterns, firing rates, and the extent of firing-rate modulation in individual units were studied, as was the extent of concomitant changes in firing rates within pairs of simultaneously active units. 2. In 21 pairs of simultaneously active motor units, studied during 41 evoked contractions, the motoneurons' discharge rates and patterns were measured by processing the cells' recorded action potentials through windowing devices and storing their timing in computer memory. Once recruited, most motoneurons increased their firing rates over a limited range of increasing muscle tension and then maintained a fairly constant firing rate as muscle force continued to rise. Most motoneurons also decreased their firing rates over a slightly larger, but still limited, range of declining muscle force before they were derecruited. Although this was the most common discharge pattern recorded, several other interesting patterns were also seen. 3. The mean firing rate for slow twitch (type S) motor units (27.8 imp/s, 5,092 activations) was found to be significantly different from the mean firing rate for fast twitch (type F) motor units (48.4 imp/s, 11,272 activations; Student's t-test, P < 0.001). There was no significant difference between the mean firing rates of fast twitch, fatigue-resistant (type FR) and fast twitch, fatigable (type FF) motor units. When the relationship between motoneuron firing rate and whole-muscle force was analyzed, it was noted that, in general, smaller, lower threshold motor units began firing at lower rates and reached lower peak firing rates than did larger, higher threshold motor units. These results confirm both earlier experimental observations and predictions made by other investigators on the basis of computer simulations of the cat MG motor pool, but are in contrast to motor-unit discharge behavior recorded in some human motor-unit studies. 4. The extent of concomitant changes in firing rate within pairs of simultaneously active motor units was examined to estimate the extent of simultaneous motoneuron firing-rate modulation across the motoneuron pool. A smoothed (5 point sliding average) version of the two motoneurons' instantaneous firing rates was plotted against each other, and the slope and statistical significance of the relationship was determined. In 16 motor-unit pairs, the slope of the motoneurons' firing-rate relationship was significantly distinct from 0. Parallel firing-rate modulation (< 10-fold difference in firing rate change reflected by a slope of > 0.1) was noted only in pairs containing motor units of like physiological type and then only if they were of similar recruitment threshold. 5. Other investigators have demonstrated that changes in a motoneuron's "steady-state" firing rate predictably reflect changes in the amount of effective synaptic current that cell is receiving. The finding in the present study of limited parallel firing-rate modulation between simultaneously active motoneurons would suggest that changes in the synaptic drive to the various motoneurons of the pool is unevenly distributed. This finding, in addition to the findings of orderly motor-unit recruitment and the relationship between motor-unit recruitment threshold and motoneuron firing rate, cannot be adequately accommodated for by the existing models of the synaptic organization in motoneuron pools. Therefore a new model of the synaptic organization within the motoneuron pool has been proposed.


1996 ◽  
Vol 75 (1) ◽  
pp. 26-37 ◽  
Author(s):  
K. E. Tansey ◽  
B. R. Botterman

1. The recruitment order of 64 pairs of motor units, comprising 21 type-identified units, was studied during centrally evoked muscle contractions of the cat medial gastrocnemius (MG) muscle in an unanesthetized, high decerebrate preparation. Motor units were functionally isolated within the MG nerve by intra-axonal (or intramyelin) penetration with conventional glass microelectrodes. 2. Graded stimulation of the mesencephalic locomotor region (MLR) was used to evoke smoothly graded contractions, which under favorable conditions was estimated to reach 40% of maximum tetanic tension of the MG muscle. With this method of activation, 100% of slow twitch (type S) units, 95% of fast twitch, fatigue-resistant (type FR) units, 86% of fast twitch, fatigue-intermediate (type FI) units, and 49% of fast twitch, fatigable (type FF) units studied were recruited. 3. Motoneuron size as estimated by axonal conduction velocity (CV) was correlated with muscle-unit size as estimated by maximum tetanic tension (Po). Although the correlation between these properties was significant among type S and FR units, no significant correlation was found for these properties among type FI and FF units. 4. Motor-unit recruitment was ordered by physiological type (S > F, 100% of pairs; S > FR > FI > FF, 93% of pairs). Although none of the motor-unit properties studied predicted recruitment order perfectly, motor-unit recruitment was found to proceed by increasing Po (89% of pairs), decreasing contraction time (79% of pairs), decreasing fatigue index (80% of pairs), and increasing CV (76% of pairs). These percentages were significantly different from random (i.e., 50%). Statistically, all four motor-unit properties were equivalent in predicting recruitment order. These results are similar to those reported by other investigators for motor-unit recruitment order evoked from other supraspinal centers, as well as from peripheral sites. 5. When, however, motor-unit recruitment within pairs of motor units containing two fast-twitch (type F) units was examined, Po was a significantly better predictor of recruitment order than CV (85% vs. 52% of pairs). One explanation for this observation is that the correlation between Po and CV is high among type S, type FR units, and possibly among the lower-tension type FF units, but not among the remaining higher-tension type FF units. 6. The reproducibility of recruitment order in multiple contractions was investigated in 16 motor-unit pairs. Recruitment order was found to be variable in only three motor-unit pairs, all of which contained units of similar physiological type and recruitment threshold. 7. Analysis of recruitment order by pair-wise testing confirms the general conclusion reached in human studies that the muscle force level at recruitment for a motor unit is highly correlated with its strength. As an additional confirmation, the whole-muscle force level at recruitment for 41 units was measured in a series of contractions in which the rate of rise of muscle tension was limited to rates < 1,000 g/s. For these contractions, a significant correlation was found between muscle tension at recruitment and motor-unit Po.


2017 ◽  
Vol 123 (4) ◽  
pp. 835-843 ◽  
Author(s):  
Alessandro Del Vecchio ◽  
Francesco Negro ◽  
Francesco Felici ◽  
Dario Farina

The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDFMU), and amplitude (RMSMU) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R2 = 0.64 ± 0.14), whereas MDFMU and RMSMU showed a weaker relation with RT ( R2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R2 = 0.71), with a strong association to ankle dorsiflexion force ( R2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles.


2021 ◽  
Vol 18 (174) ◽  
pp. 20200765
Author(s):  
Adrian K. M. Lai ◽  
Taylor J. M. Dick ◽  
Andrew A. Biewener ◽  
James M. Wakeling

The nervous system is faced with numerous strategies for recruiting a large number of motor units within and among muscle synergists to produce and control body movement. This is challenging, considering multiple combinations of motor unit recruitment may result in the same movement. Yet vertebrates are capable of performing a wide range of movement tasks with different mechanical demands. In this study, we used an experimental human cycling paradigm and musculoskeletal simulations to test the theory that a strategy of prioritizing the minimization of the metabolic cost of muscle contraction, which improves mechanical efficiency, governs the recruitment of motor units within a muscle and the coordination among synergist muscles within the limb. Our results support our hypothesis, for which measured muscle activity and model-predicted muscle forces in soleus—the slower but stronger ankle plantarflexor—is favoured over the weaker but faster medial gastrocnemius (MG) to produce plantarflexor force to meet increased load demands. However, for faster-contracting speeds induced by faster-pedalling cadence, the faster MG is favoured. Similar recruitment patterns were observed for the slow and fast fibres within each muscle. By contrast, a commonly used modelling strategy that minimizes muscle excitations failed to predict force sharing and known physiological recruitment strategies, such as orderly motor unit recruitment. Our findings illustrate that this common strategy for recruiting motor units within muscles and coordination between muscles can explain the control of the plantarflexor muscles across a range of mechanical demands.


1982 ◽  
Vol 47 (5) ◽  
pp. 782-796 ◽  
Author(s):  
P. J. Cordo ◽  
W. Z. Rymer

1. Multiunit integrated electromyographic (EMG) signals and single-unit EMG potentials were recorded during isometric and lengthening (stretch reflex) contractions of soleus and medial gastrocnemius (MG) muscles in 20 decerebrate cats. Patterns of motor-unit recruitment and rate modulation were examined in isometric muscles and during constant-velocity stretches. 2. Analysis of multiunit EMG activity and its relationship to active force revealed a marked difference between isometric and lengthening contractions. While the force-EMG relationship for isometric contractions was characteristically linear, the relation recorded during stretch-reflex responses showed a disproportionate early EMG increase, which was most obvious at low force levels, suggesting that the efficacy of force production is reduced in lengthening muscle. 3. Single-unit recruitment patterns were found to be qualitatively similar in isometric and lengthening contractions. In each case, motor units were recruited in order of increasing spike voltage. The numbers of newly recruited units declined steeply with each successive increment in active force. For a given unit, the force at which recruitment occurred was found to be greater in lengthening contractions than in isometric contractions, and in lengthening contractions it was also found to depend on the level of initial force. 4. Two patterns of motor-unit rate modulation were observed during muscle stretch, depending on whether a given unit was firing before the beginning of stretch or whether it was recruited during the course of stretch. Motor units that were active prior to stretch were found to increase firing rate at stretch onset and to vary their rate very little thereafter. Motor units recruited in the course of stretch began firing at an initial rate proportional to their force threshold, gradually increased their firing rate with increasing force, and sometimes reached an apparent maximum rate. 5. These results are discussed in terms of the mechanical properties of lengthening muscle and reflex regulation of these properties. Each identified pattern of motor-unit recruitment and rate modulation is evaluated for its potential contribution to the regulation of muscle properties, especially the prevention of muscle yield. We conclude that at low to moderate levels of initial force, recruitment of new motor units is likely to be the most effective compensatory mechanism.


1985 ◽  
Vol 53 (5) ◽  
pp. 1194-1200 ◽  
Author(s):  
B. Calancie ◽  
P. Bawa

The order of recruitment of flexor carpi radialis (FCR) motor units was studied during voluntary and reflexive activation of the motoneuron pool for two adult subjects. During slow "voluntary" activation, the recruitment threshold for tonic motoneuron firing was determined, and then the twitch profile of the motor unit was computed by the spike-triggered averaging technique. A positive correlation (r = 0.79 and 0.68 for the two subjects, respectively) between recruitment threshold and twitch amplitude implies that recruitment of FCR motoneurons during slow ramp isometric contractions proceeds in order of increasing size. The accompanying paper describes the behavior of single motor units during the short- and long-latency periods of the stretch reflex. When the effects of sufficient voluntary facilitation (preload) combined with a sufficiently large torque step were just adequate to cause a motor unit to fire during the stretch reflex, its response was virtually always confined to the long-latency period. In addition, the first unit to begin responding to muscle stretch always had the lowest voluntary recruitment threshold relative to other units "visible" at that recording site. By making this unit tonic, the reflex response to the same load increased substantially during the short-latency reflex period, while a second unit increased its reflex response probability during the long-latency period. Thus the voluntary recruitment order of two or more motor units is preserved during the stretch reflex, and is in fact maintained within first the long-latency and then short-latency components of this reflex.


2014 ◽  
Vol 111 (2) ◽  
pp. 361-368 ◽  
Author(s):  
Gregory L. Powell ◽  
Amber Rice ◽  
Seres J. Bennett-Cross ◽  
Ralph F. Fregosi

Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53–68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak ( r2 = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.


2002 ◽  
Vol 205 (3) ◽  
pp. 359-369 ◽  
Author(s):  
James M. Wakeling ◽  
Motoshi Kaya ◽  
Genevieve K. Temple ◽  
Ian A. Johnston ◽  
Walter Herzog

SUMMARY Motor units are the functional units of muscle contraction in vertebrates. Each motor unit comprises muscle fibres of a particular fibre type and can be considered as fast or slow depending on its fibre-type composition. Motor units are typically recruited in a set order, from slow to fast, in response to the force requirements from the muscle. The anatomical separation of fast and slow muscle in fish permits direct recordings from these two fibre types. The frequency spectra from different slow and fast myotomal muscles were measured in the rainbow trout Oncorhynchus mykiss. These two muscle fibre types generated distinct low and high myoelectric frequency bands. The cat paw-shake is an activity that recruits mainly fast muscle. This study showed that the myoelectric signal from the medial gastrocnemius of the cat was concentrated in a high frequency band during paw-shake behaviour. During slow walking, the slow motor units of the medial gastrocnemius are also recruited, and this appeared as increased muscle activity within a low frequency band. Therefore, high and low frequency bands could be distinguished in the myoelectric signals from the cat medial gastrocnemius and probably corresponded, respectively, to fast and slow motor unit recruitment. Myoelectric signals are resolved into time/frequency space using wavelets to demonstrate how patterns of motor unit recruitment can be determined for a range of locomotor activities.


Sign in / Sign up

Export Citation Format

Share Document