scholarly journals A novel framework based on a data-driven approach for modelling the behaviour of organisms in chemical plume tracing

2021 ◽  
Vol 18 (181) ◽  
pp. 20210171
Author(s):  
Kei Okajima ◽  
Shunsuke Shigaki ◽  
Takanobu Suko ◽  
Duc-Nhat Luong ◽  
Cesar Hernandez Reyes ◽  
...  

We propose a data-driven approach for modelling an organism's behaviour instead of conventional model-based strategies in chemical plume tracing (CPT). CPT models based on this approach show promise in faithfully reproducing organisms’ CPT behaviour. To construct the data-driven CPT model, a training dataset of the odour stimuli input toward the organism is needed, along with an output of the organism’s CPT behaviour. To this end, we constructed a measurement system comprising an array of alcohol sensors for the measurement of the input and a camera for tracking the output in a real scenario. Then, we determined a transfer function describing the input–output relationship as a stochastic process by applying Gaussian process regression, and established the data-driven CPT model based on measurements of the organism’s CPT behaviour. Through CPT experiments in simulations and a real environment, we evaluated the performance of the data-driven CPT model and compared its success rate with those obtained from conventional model-based strategies. As a result, the proposed data-driven CPT model demonstrated a better success rate than those obtained from conventional model-based strategies. Moreover, we considered that the data-driven CPT model could reflect the aspect of an organism’s adaptability that modulated its behaviour with respect to the surrounding environment. However, these useful results came from the CPT experiments conducted in simple settings of simulations and a real environment. If making the condition of the CPT experiments more complex, we confirmed that the data-driven CPT model would be less effective for locating an odour source. In this way, this paper not only poses major contributions toward the development of a novel framework based on a data-driven approach for modelling an organism’s CPT behaviour, but also displays a research limitation of a data-driven approach at this stage.

2021 ◽  
Vol 1 ◽  
pp. 61-70
Author(s):  
Ilia Iuskevich ◽  
Andreas-Makoto Hein ◽  
Kahina Amokrane-Ferka ◽  
Abdelkrim Doufene ◽  
Marija Jankovic

AbstractUser experience (UX) focused business needs to survive and plan its new product development (NPD) activities in a highly turbulent environment. The latter is a function of volatile UX and technology trends, competition, unpredictable events, and user needs uncertainty. To address this problem, the concept of design roadmapping has been proposed in the literature. It was argued that tools built on the idea of design roadmapping have to be very flexible and data-driven (i.e., be able to receive feedback from users in an iterative manner). At the same time, a model-based approach to roadmapping has emerged, promising to achieve such flexibility. In this work, we propose to incorporate design roadmapping to model-based roadmapping and integrate it with various user testing approaches into a single tool to support a flexible data-driven NPD planning process.


Author(s):  
Pierpaolo De Filippi ◽  
Simone Formentin ◽  
Sergio M. Savaresi

The design of an active stability control system for two-wheeled vehicles is a fully open problem and it constitutes a challenging task due to the complexity of two-wheeled vehicles dynamics and the strong interaction between the vehicle and the driver. This paper describes and compares two different methods, a model-based and a data-driven approach, to tune a Multi-Input-Multi-Output controller which allows to enhance the safety while guaranteeing a good driving feeling. The two strategies are tested on a multibody motorcycle simulator on challenging maneuvers such as kick-back and strong braking while cornering at high speed.


2019 ◽  
Vol 14 (4) ◽  
pp. 046006 ◽  
Author(s):  
Shunsuke Shigaki ◽  
Shoma Haigo ◽  
Cesar Hernandez Reyes ◽  
Takeshi Sakurai ◽  
Ryohei Kanzaki ◽  
...  

Author(s):  
Mohammed A. Alam ◽  
Michael H. Azarian ◽  
Michael Osterman ◽  
Michael Pecht

This paper presents the application of model-based and data-driven approaches for prognostics and health management (PHM) of embedded planar capacitors under elevated temperature and voltage conditions. An embedded planar capacitor is a thin laminate that serves both as a power/ground plane and as a parallel plate capacitor in a multilayered printed wiring board (PWB). These capacitors are typically used for decoupling applications and are found to reduce the required number of surface mount capacitors. The capacitor laminate used in this study consisted of an epoxy-barium titanate (BaTiO3) composite dielectric sandwiched between Cu layers. Three electrical parameters, capacitance, dissipation factor, and insulation resistance, were monitored in-situ once every hour during testing under elevated temperature and voltage aging conditions. The failure modes observed were a sharp drop in insulation resistance and a gradual decrease in capacitance. An approach to model the time-to-failure associated with these failure modes as a function of the stress level is presented in this paper. Model-based PHM can be used to predict the time-to-failure associated with a single failure mode, consisting of a drop in either insulation resistance or capacitance. However, failure of an embedded capacitor could occur due to either of these two failure modes and was not captured using a single model. A combined model for both these failure modes can be developed but there was a large variance in the time-to-failure data of failures as a result of a sharp drop in insulation resistance. Therefore a data-driven approach, which utilizes the trend and correlation between the parameters to predict remaining life, was investigated to perform PHM. The data-driven approach used in this paper is the Mahalanobis distance (MD) method that reduces a multivariate data set to a single parameter by considering correlations among the parameters. The Mahalanobis distance method was successful in predicting the failures as a result of a gradual decrease in capacitance. However, prediction of failures as a result of a drop in insulation resistance was generally challenging due to their sudden onset. An experimental approach to address such sudden failures is discussed to facilitate identifying any trends in the parameters prior to failure.


Sensors ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 7512-7536 ◽  
Author(s):  
Meng-Li Cao ◽  
Qing-Hao Meng ◽  
Jia-Ying Wang ◽  
Bing Luo ◽  
Ya-Qi Jing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document