scholarly journals CEP19 cooperates with FOP and CEP350 to drive early steps in the ciliogenesis programme

Open Biology ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. 170114 ◽  
Author(s):  
Bahareh A. Mojarad ◽  
Gagan D. Gupta ◽  
Monica Hasegan ◽  
Oumou Goudiam ◽  
Renata Basto ◽  
...  

Primary cilia are microtubule-based sensory organelles necessary for efficient transduction of extracellular cues. To initiate cilia formation, ciliary vesicles (CVs) are transported to the vicinity of the centrosome where they dock to the distal end of the mother centriole and fuse to initiate cilium assembly. However, to this date, the early steps in cilia formation remain incompletely understood. Here, we demonstrate functional interplay between CEP19, FOP and CEP350 in ciliogenesis. Using three-dimensional structured-illumination microscopy (3D-SIM) imaging, we mapped the relative spatial distribution of these proteins at the distal end of the mother centriole and show that CEP350/FOP act upstream of CEP19 in their recruitment hierarchy. We demonstrate that CEP19 CRISPR KO cells are severely impaired in their ability to form cilia, analogous to the loss of function of CEP19 binding partners FOP and CEP350. Notably, in the absence of CEP19 microtubule anchoring at centromes is similar in manner to its interaction partners FOP and CEP350. Using GFP-tagged deletion constructs of CEP19, we show that the C-terminus of CEP19 is required for both its localization to centrioles and for its function in ciliogenesis. Critically, this region also mediates the interaction between CEP19 and FOP/CEP350. Interestingly, a morbid-obesity-associated R82* truncated mutant of CEP19 cannot ciliate nor interact with FOP and CEP350, indicative of a putative role for CEP19 in ciliopathies. Finally, analysis of CEP19 KO cells using thin-section electron microscopy revealed marked defects in the docking of CVs to the distal end of the mother centrioles. Together, these data demonstrate a role for the CEP19, FOP and CEP350 module in ciliogenesis and the possible effect of disrupting their functions in ciliopathies.

2021 ◽  
Author(s):  
Anna Loeschberger ◽  
Yauheni Novikau ◽  
Ralf Netz ◽  
Marie-Christin Spindler ◽  
Ricardo Benavente ◽  
...  

Three-dimensional (3D) multicolor super-resolution imaging in the 50-100 nm range in fixed and living cells remains challenging. We extend the resolution of structured illumination microscopy (SIM) by an improved nonlinear iterative reconstruction algorithm that enables 3D multicolor imaging with improved spatiotemporal resolution at low illumination intensities. We demonstrate the performance of dual iterative SIM (diSIM) imaging cellular structures in fixed cells including synaptonemal complexes, clathrin coated pits and the actin cytoskeleton with lateral resolutions of 60-100 nm with standard fluorophores. Furthermore, we visualize dendritic spines in 70 micrometer thick brain slices with an axial resolution < 200 nm. Finally, we image dynamics of the endoplasmatic reticulum and microtubules in living cells with up to 255 frames/s.


2020 ◽  
Author(s):  
Jiji Chen ◽  
Hideki Sasaki ◽  
Hoyin Lai ◽  
Yijun Su ◽  
Jiamin Liu ◽  
...  

Abstract We demonstrate residual channel attention networks (RCAN) for restoring and enhancing volumetric time-lapse (4D) fluorescence microscopy data. First, we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy 4D super-resolution data, enabling image capture over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables class-leading resolution enhancement, superior to other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion (STED) microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy ground truth, achieving improvements of ~1.4-fold laterally and ~3.4-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluating and further enhancing network performance.


2020 ◽  
Vol 10 (2) ◽  
pp. 20190070 ◽  
Author(s):  
Sophie Ketchen ◽  
Arndt Rohwedder ◽  
Sabine Knipp ◽  
Filomena Esteves ◽  
Nina Struve ◽  
...  

The limitations of two-dimensional analysis in three-dimensional (3D) cellular imaging impair the accuracy of research findings in biological studies. Here, we report a novel 3D approach to acquisition, analysis and interpretation of tumour spheroid images. Our research interest in mesenchymal–amoeboid transition led to the development of a workflow incorporating the generation and analysis of 3D data with instant structured illumination microscopy and a new ImageJ plugin.


Nanophotonics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 143-148
Author(s):  
Adrien Descloux ◽  
Marcel Müller ◽  
Vytautas Navikas ◽  
Andreas Markwirth ◽  
Robin van den Eynde ◽  
...  

AbstractSuper-resolution structured illumination microscopy (SR-SIM) can be conducted at video-rate acquisition speeds when combined with high-speed spatial light modulators and sCMOS cameras, rendering it particularly suitable for live-cell imaging. If, however, three-dimensional (3D) information is desired, the sequential acquisition of vertical image stacks employed by current setups significantly slows down the acquisition process. In this work, we present a multiplane approach to SR-SIM that overcomes this slowdown via the simultaneous acquisition of multiple object planes, employing a recently introduced multiplane image splitting prism combined with high-speed SIM illumination. This strategy requires only the introduction of a single optical element and the addition of a second camera to acquire a laterally highly resolved 3D image stack. We demonstrate the performance of multiplane SIM by applying this instrument to imaging the dynamics of mitochondria in living COS-7 cells.


2016 ◽  
Vol 215 (3) ◽  
pp. 383-399 ◽  
Author(s):  
Sricharan Murugesan ◽  
Jinsung Hong ◽  
Jason Yi ◽  
Dong Li ◽  
Jordan R. Beach ◽  
...  

Actin assembly and inward flow in the plane of the immunological synapse (IS) drives the centralization of T cell receptor microclusters (TCR MCs) and the integrin leukocyte functional antigen 1 (LFA-1). Using structured-illumination microscopy (SIM), we show that actin arcs populating the medial, lamella-like region of the IS arise from linear actin filaments generated by one or more formins present at the IS distal edge. After traversing the outer, Arp2/3-generated, lamellipodia-like region of the IS, these linear filaments are organized by myosin II into antiparallel concentric arcs. Three-dimensional SIM shows that active LFA-1 often aligns with arcs, whereas TCR MCs commonly reside between arcs, and total internal reflection fluorescence SIM shows TCR MCs being swept inward by arcs. Consistently, disrupting actin arc formation via formin inhibition results in less centralized TCR MCs, missegregated integrin clusters, decreased T–B cell adhesion, and diminished TCR signaling. Together, our results define the origin, organization, and functional significance of a major actomyosin contractile structure at the IS that directly propels TCR MC transport.


Sign in / Sign up

Export Citation Format

Share Document