mother centriole
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 47)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Nafisa Nuzhat ◽  
Kristof Van Schil ◽  
Sandra Liakopoulos ◽  
Miriam Bauwens ◽  
Alfredo Dueñas Rey ◽  
...  

Ciliopathies often comprise retinal degeneration since the photoreceptor outer segment is an adapted primary cilium. CEP162 is a distal end centriolar protein required for proper transition zone assembly during ciliogenesis and whose loss causes ciliopathy in zebrafish. CEP162 has so far not been implicated in human disease. Here, we identified a homozygous CEP162 frameshift variant, c.1935dupA (p.(E646R*5)), in retinitis pigmentosa patients from two unrelated Moroccan families, likely representing a founder allele. We found that even though mRNA levels were reduced, the truncated CEP162-E646R*5 protein was expressed and localized to the mitotic spindle during mitosis, but not at the basal body of the cilium. In CEP162 knockdown cells, expression of the truncated CEP162-E646R*5 protein is unable to restore ciliation indicating its loss of function at the cilium. In patient fibroblasts, cilia overcome the absence of CEP162 from the primary cilium by delaying ciliogenesis through the persistence of CP110 at the mother centriole. The patient fibroblasts are ultimately able to extend some abnormally long cilia that are missing key transition zone components. Defective transition zone formation likely disproportionately affects the long-living ciliary outer segment of photoreceptors resulting in retinal dystrophy. CEP162 is expressed in human retina, and we show that wild-type CEP162, but not truncated CEP162-E646R*5, specifically localizes to the distal end of centrioles of mouse photoreceptor cilia. Together, our genetic, cell-based, and in vivo modeling establish that CEP162 deficiency causes retinal ciliopathy in humans.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Xiao-Lin Shen ◽  
Jin-Feng Yuan ◽  
Xuan-He Qin ◽  
Guang-Ping Song ◽  
Huai-Bin Hu ◽  
...  

Primary cilia transduce diverse signals in embryonic development and adult tissues. Defective ciliogenesis results in a series of human disorders collectively known as ciliopathies. The CP110–CEP97 complex removal from the mother centriole is an early critical step for ciliogenesis, but the underlying mechanism for this step remains largely obscure. Here, we reveal that the linear ubiquitin chain assembly complex (LUBAC) plays an essential role in ciliogenesis by targeting the CP110–CEP97 complex. LUBAC specifically generates linear ubiquitin chains on CP110, which is required for CP110 removal from the mother centriole in ciliogenesis. We further identify that a pre-mRNA splicing factor, PRPF8, at the distal end of the mother centriole acts as the receptor of the linear ubiquitin chains to facilitate CP110 removal at the initial stage of ciliogenesis. Thus, our study reveals a direct mechanism of regulating CP110 removal in ciliogenesis and implicates the E3 ligase LUBAC as a potential therapy target of cilia-associated diseases, including ciliopathies and cancers.


2021 ◽  
Author(s):  
Neil Henry James Cunningham ◽  
Imene Bouhlel ◽  
Paul Thomas Conduit

Centrosomes are important organisers of microtubules within animal cells. They comprise a pair of centrioles surrounded by the pericentriolar material (PCM), which nucleates and organises the microtubules. To maintain centrosome numbers, centrioles must duplicate once and only once per cell cycle. During S-phase, a single new daughter centriole is built orthogonally on one side of each radially symmetric mother centriole. Mis-regulation of duplication can result in the simultaneous formation of multiple daughter centrioles around a single mother centriole, leading to centrosome amplification, a hallmark of cancer. It remains unclear how a single duplication site is established. It also remains unknown whether this site is pre-defined or randomly positioned around the mother centriole. Here, we show that within Drosophila syncytial embryos daughter centrioles preferentially assemble on the side of the mother facing the nuclear envelope, to which the centrosomes are closely attached. This positional preference is established early during duplication and remains stable throughout daughter centriole assembly, but is lost in centrosomes forced to lose their connection to the nuclear envelope. This shows that non-centrosomal cues influence centriole duplication and raises the possibility that these external cues could help establish a single duplication site.


2021 ◽  
Vol 22 (22) ◽  
pp. 12253
Author(s):  
Fatma Mansour ◽  
Felix J. Boivin ◽  
Iman B. Shaheed ◽  
Markus Schueler ◽  
Kai M. Schmidt-Ott

The primary cilium is found in most mammalian cells and plays a functional role in tissue homeostasis and organ development by modulating key signaling pathways. Ciliopathies are a group of genetically heterogeneous disorders resulting from defects in cilia development and function. Patients with ciliopathic disorders exhibit a range of phenotypes that include nephronophthisis (NPHP), a progressive tubulointerstitial kidney disease that commonly results in end-stage renal disease (ESRD). In recent years, distal appendages (DAPs), which radially project from the distal end of the mother centriole, have been shown to play a vital role in primary ciliary vesicle docking and the initiation of ciliogenesis. Mutations in the genes encoding these proteins can result in either a complete loss of the primary cilium, abnormal ciliary formation, or defective ciliary signaling. DAPs deficiency in humans or mice commonly results in NPHP. In this review, we outline recent advances in our understanding of the molecular functions of DAPs and how they participate in nephronophthisis development.


2021 ◽  
Author(s):  
Shuwei Xie ◽  
Ellie Smith ◽  
Carter Dierlam ◽  
Danita Mathew ◽  
Angelina Davis ◽  
...  

The mammalian retromer is comprised of subunits VPS26, VPS29 and VPS35, and a more loosely-associated sorting nexin (SNX) heterodimer. Despite known roles for the retromer in multiple trafficking events in yeast and mammalian cells, its role in development is poorly understood, and its potential function in primary ciliogenesis remains unknown. Using CRISPR-Cas9 editing, we demonstrated that vps-26 homozygous knockout C. elegans have reduced brood sizes and impaired vulval development, as well as decreased body length which has been linked to defects in primary ciliogenesis. Since many endocytic proteins are implicated in the generation of primary cilia, we addressed whether the retromer regulates ciliogenesis in mammalian cells. We observed VPS35 localized to the primary cilium, and depletion of VPS26, VPS35 or SNX1/SNX5 led to decreased ciliogenesis. Retromer also coimmunoprecipitated with the capping protein, CP110, and was required for its removal from the mother centriole. Herein, we characterize new roles for the retromer in C. elegans development and in the regulation of ciliogenesis in mammalian cells, and suggest a novel role for the retromer in CP110 removal from the mother centriole.


2021 ◽  
Author(s):  
Dandan Ma ◽  
Rongyi Wang ◽  
Fulin Wang ◽  
Zhiquan Chen ◽  
Ning Huang ◽  
...  

AbstractThe centrosome, composed of a pair of centrioles (mother and daughter centrioles) and pericentriolar material, is mainly responsible for microtubule nucleation and anchorage in animal cells. The subdistal appendage (SDA) is a centriolar structure located at the subdistal region on the mother centriole, and it functions in microtubule anchorage. However, the molecular composition and detailed structure of SDA remain largely unknown. Here, we identified a-taxilin and r-taxilin as new SDA components, which form a complex via their coiled-coil domains and serve as a new subgroup during SDA hierarchical assembly. Their SDA localization is dependent on ODF2, and α-taxilin recruits CEP170 to the SDA. Functional analyses suggest that α-taxilin and γ-taxilin are responsible for centrosomal microtubule anchorage during interphase, as well as for proper spindle orientation during metaphase. Altogether, our results shed light on the molecular components and functional understanding of the SDA hierarchical assembly and microtubule organization.


Cell Research ◽  
2021 ◽  
Author(s):  
Min Liu ◽  
Wen Zhang ◽  
Min Li ◽  
Jiaxing Feng ◽  
Wenjun Kuang ◽  
...  

AbstractPrimary cilia extending from mother centrioles are essential for vertebrate development and homeostasis maintenance. Centriolar coiled-coil protein 110 (CP110) has been reported to suppress ciliogenesis initiation by capping the distal ends of mother centrioles. However, the mechanism underlying the specific degradation of mother centriole-capping CP110 to promote cilia initiation remains unknown. Here, we find that autophagy is crucial for CP110 degradation at mother centrioles after serum starvation in MEF cells. We further identify NudC-like protein 2 (NudCL2) as a novel selective autophagy receptor at mother centrioles, which contains an LC3-interacting region (LIR) motif mediating the association of CP110 and the autophagosome marker LC3. Knockout of NudCL2 induces defects in the removal of CP110 from mother centrioles and ciliogenesis, which are rescued by wild-type NudCL2 but not its LIR motif mutant. Knockdown of CP110 significantly attenuates ciliogenesis defects in NudCL2-deficient cells. In addition, NudCL2 morphants exhibit ciliation-related phenotypes in zebrafish, which are reversed by wild-type NudCL2, but not its LIR motif mutant. Importantly, CP110 depletion significantly reverses these ciliary phenotypes in NudCL2 morphants. Taken together, our data suggest that NudCL2 functions as an autophagy receptor mediating the selective degradation of mother centriole-capping CP110 to promote ciliogenesis, which is indispensable for embryo development in vertebrates.


2021 ◽  
Author(s):  
Antonio Jesús Lara Ordóňez ◽  
Belén Fernández ◽  
Rachel Fasiczka ◽  
Yahaira Naaldijk ◽  
Elena Fdez ◽  
...  

The Parkinson′s disease-associated LRRK2 kinase phosphorylates multiple Rab GTPases including Rab8 and Rab10, which enhances their binding to RILPL1 and RILPL2. The nascent interaction between phospho-Rab10 and RILPL1 blocks ciliogenesis in vitro and in the intact brain, and interferes with the cohesion of duplicated centrosomes in dividing cells. We show here that various LRRK2 risk variants and all currently described regulators of the LRRK2 signaling pathway converge upon causing centrosomal cohesion deficits. The cohesion deficits do not require the presence of RILPL2 or of other LRRK2 kinase substrates including Rab12, Rab35 and Rab43. Rather, they depend on the RILPL1-mediated centrosomal accumulation of phosphorylated Rab10. RILPL1 localizes to the subdistal appendages of the mother centriole, followed by recruitment of the LRRK2-phosphorylated Rab protein to cause the centrosomal defects. These data reveal a common molecular pathway by which alterations in the LRRK2 kinase activity impact upon centrosome-related events.


2021 ◽  
Vol 220 (9) ◽  
Author(s):  
Noémie Gaudin ◽  
Paula Martin Gil ◽  
Juliette Azimzadeh

Centriole maturation is essential for ciliogenesis, but which proteins and how they regulate ciliary assembly is unclear. In this issue, Kumar et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202011133) shed light on this process by identifying a ciliopathy complex at the distal mother centriole that restrains centriole length and supports the formation of distal appendages.


Sign in / Sign up

Export Citation Format

Share Document