scholarly journals Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes

2020 ◽  
Author(s):  
Jiji Chen ◽  
Hideki Sasaki ◽  
Hoyin Lai ◽  
Yijun Su ◽  
Jiamin Liu ◽  
...  

Abstract We demonstrate residual channel attention networks (RCAN) for restoring and enhancing volumetric time-lapse (4D) fluorescence microscopy data. First, we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy 4D super-resolution data, enabling image capture over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables class-leading resolution enhancement, superior to other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion (STED) microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy ground truth, achieving improvements of ~1.4-fold laterally and ~3.4-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluating and further enhancing network performance.

2020 ◽  
Author(s):  
Jiji Chen ◽  
Hideki Sasaki ◽  
Hoyin Lai ◽  
Yijun Su ◽  
Jiamin Liu ◽  
...  

AbstractWe demonstrate residual channel attention networks (RCAN) for restoring and enhancing volumetric time-lapse (4D) fluorescence microscopy data. First, we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy 4D super-resolution data, enabling image capture over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables class-leading resolution enhancement, superior to other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ∼2.5-fold lateral resolution enhancement using stimulated emission depletion (STED) microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy ground truth, achieving improvements of ∼1.4-fold laterally and ∼3.4-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluating and further enhancing network performance.


Nanophotonics ◽  
2018 ◽  
Vol 7 (5) ◽  
pp. 935-947 ◽  
Author(s):  
Ida S. Opstad ◽  
Deanna L. Wolfson ◽  
Cristina I. Øie ◽  
Balpreet S. Ahluwalia

AbstractThe dimensions of mitochondria are close to the diffraction limit of conventional light microscopy techniques, making the complex internal structures of mitochondria unresolvable. In recent years, new fluorescence-based optical imaging techniques have emerged, which allow for optical imaging below the conventional limit, enabling super-resolution (SR). Possibly the most promising SR and diffraction-limited microscopy techniques for live-cell imaging are structured illumination microscopy (SIM) and deconvolution microscopy (DV), respectively. Both SIM and DV are widefield techniques and therefore provide fast-imaging speed as compared to scanning based microscopy techniques. We have exploited the capabilities of three-dimensional (3D) SIM and 3D DV to investigate different sub-mitochondrial structures in living cells: the outer membrane, the intermembrane space, and the matrix. Using different mitochondrial probes, each of these sub-structures was first investigated individually and then in combination. We describe the challenges associated with simultaneous labeling and SR imaging and the optimized labeling protocol and imaging conditions to obtain simultaneous three-color SR imaging of multiple mitochondrial regions in living cells. To investigate both mitochondrial dynamics and structural details in the same cell, the combined usage of DV for long-term time-lapse imaging and 3D SIM for detailed, selected time point analysis was a useful strategy.


2017 ◽  
Vol 28 (20) ◽  
pp. 2734-2745 ◽  
Author(s):  
Matthew J. Niederhuber ◽  
Talley J. Lambert ◽  
Clarence Yapp ◽  
Pamela A. Silver ◽  
Jessica K. Polka

Carbon fixation in cyanobacteria makes a major contribution to the global carbon cycle. The cyanobacterial carboxysome is a proteinaceous microcompartment that protects and concentrates the carbon-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in a paracrystalline lattice, making it possible for these organisms to fix CO2 from the atmosphere. The protein responsible for the organization of this lattice in beta-type carboxysomes of the freshwater cyanobacterium Synechococcus elongatus, CcmM, occurs in two isoforms thought to localize differentially within the carboxysome matrix. Here we use wide-field time-lapse and three-dimensional structured illumination microscopy (3D-SIM) to study the recruitment and localization of these two isoforms. We demonstrate that this superresolution technique is capable of distinguishing the localizations of the outer protein shell of the carboxysome and its internal cargo. We develop an automated analysis pipeline to analyze and quantify 3D-SIM images and generate a population-level description of the carboxysome shell protein, RuBisCO, and CcmM isoform localization. We find that both CcmM isoforms have similar spatial and temporal localization, prompting a revised model of the internal arrangement of the β-carboxysome.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liliana Barbieri ◽  
Huw Colin-York ◽  
Kseniya Korobchevskaya ◽  
Di Li ◽  
Deanna L. Wolfson ◽  
...  

AbstractQuantifying small, rapidly evolving forces generated by cells is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. Traction force microscopy remains one of the most broadly applied force probing technologies but typically restricts itself to slow events over seconds and micron-scale displacements. Here, we improve >2-fold spatially and >10-fold temporally the resolution of planar cellular force probing compared to its related conventional modalities by combining fast two-dimensional total internal reflection fluorescence super-resolution structured illumination microscopy and traction force microscopy. This live-cell 2D TIRF-SIM-TFM methodology offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology to analysis.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1760
Author(s):  
Joshua J. A. Poole ◽  
Leila B. Mostaço-Guidolin

Biological tissues are not uniquely composed of cells. A substantial part of their volume is extracellular space, which is primarily filled by an intricate network of macromolecules constituting the extracellular matrix (ECM). The ECM serves as the scaffolding for tissues and organs throughout the body, playing an essential role in their structural and functional integrity. Understanding the intimate interaction between the cells and their structural microenvironment is central to our understanding of the factors driving the formation of normal versus remodelled tissue, including the processes involved in chronic fibrotic diseases. The visualization of the ECM is a key factor to track such changes successfully. This review is focused on presenting several optical imaging microscopy modalities used to characterize different ECM components. In this review, we describe and provide examples of applications of a vast gamut of microscopy techniques, such as widefield fluorescence, total internal reflection fluorescence, laser scanning confocal microscopy, multipoint/slit confocal microscopy, two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG, THG), coherent anti-Stokes Raman scattering (CARS), fluorescence lifetime imaging microscopy (FLIM), structured illumination microscopy (SIM), stimulated emission depletion microscopy (STED), ground-state depletion microscopy (GSD), and photoactivated localization microscopy (PALM/fPALM), as well as their main advantages, limitations.


2021 ◽  
Author(s):  
Anna Loeschberger ◽  
Yauheni Novikau ◽  
Ralf Netz ◽  
Marie-Christin Spindler ◽  
Ricardo Benavente ◽  
...  

Three-dimensional (3D) multicolor super-resolution imaging in the 50-100 nm range in fixed and living cells remains challenging. We extend the resolution of structured illumination microscopy (SIM) by an improved nonlinear iterative reconstruction algorithm that enables 3D multicolor imaging with improved spatiotemporal resolution at low illumination intensities. We demonstrate the performance of dual iterative SIM (diSIM) imaging cellular structures in fixed cells including synaptonemal complexes, clathrin coated pits and the actin cytoskeleton with lateral resolutions of 60-100 nm with standard fluorophores. Furthermore, we visualize dendritic spines in 70 micrometer thick brain slices with an axial resolution < 200 nm. Finally, we image dynamics of the endoplasmatic reticulum and microtubules in living cells with up to 255 frames/s.


2020 ◽  
Vol 8 (11) ◽  
Author(s):  
Verena Richter ◽  
Michael Wagner ◽  
Herbert Schneckenburger

Total Internal Reflection Fluorescence Microscopy (TIRFM) has been established almost 40 years ago for studies of plasma membranes or membrane proximal sites of living cells. The method is based on light incidence at an angle above the critical angle of total internal reflection and generation of an evanescent electromagnetic field penetrating about 100 nm into a sample and permitting selective excitation of membrane proximal fluorophores. Two techniques are presented here: prism-type TIRFM and objective-type TIRFM with high aperture microscope objective lenses. Furthermore, numerous applications are summarized, e.g. measurement of focal adhesions, cell-substrate topology, endocytosis or exocytosis of vesicles as well as single molecule detection within thin layers. Finally, highly innovative combinations of TIRFM with Förster Resonance Energy Transfer (FRET) measurements as well as with Structured Illumination Microscopy (SIM) and fluorescence reader technologies are presented.


Sign in / Sign up

Export Citation Format

Share Document