scholarly journals Climate change, transgenic corn adoption and field-evolved resistance in corn earworm

2017 ◽  
Vol 4 (6) ◽  
pp. 170210 ◽  
Author(s):  
P. Dilip Venugopal ◽  
Galen P. Dively

Increased temperature anomaly during the twenty-first century coincides with the proliferation of transgenic crops containing the bacterium Bacillus thuringiensis (Berliner) (Bt) to express insecticidal Cry proteins. Increasing temperatures profoundly affect insect life histories and agricultural pest management. However, the implications of climate change on Bt crop–pest interactions and insect resistance to Bt crops remains unexamined. We analysed the relationship of temperature anomaly and Bt adoption with field-evolved resistance to Cry1Ab Bt sweet corn in a major pest, Helicoverpa zea (Boddie). Increased Bt adoption during 1996–2016 suppressed H. zea populations, but increased temperature anomaly buffers population reduction. Temperature anomaly and its interaction with elevated selection pressure from high Bt acreage probably accelerated the Bt-resistance development. Helicoverpa zea damage to corn ears, kernel area consumed, mean instars and proportion of late instars in Bt varieties increased with Bt adoption and temperature anomaly, through additive or interactive effects. Risk of Bt-resistant H. zea spreading is high given extensive Bt adoption, and the expected increase in overwintering and migration. Our study highlights the challenges posed by climate change for Bt biotechnology-based agricultural pest management, and the need to incorporate evolutionary processes affected by climate change into Bt-resistance management programmes.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kadie E Britt ◽  
Thomas P Kuhar ◽  
Whitney Cranshaw ◽  
Christopher T McCullough ◽  
Sally V Taylor ◽  
...  

Abstract Corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), has emerged as an injurious insect pest to hemp, Cannabis sativa L., a crop newly reintroduced to the United States. Growing hemp presents a potential alternative economic opportunity for farmers but can be challenging with a market that is unstable and just developing. One of the most notable production challenges is managing corn earworm, an insect pest that is particularly damaging when it feeds on flower buds produced in cannabinoid varieties, creating extensive bud tunneling and wounds that allow entry of pathogens that can aid development and presence of bud rot. Damage to seeds is of lesser concern in hemp cultivars grown for grain and minimal risk is associated with hemp grown for fiber. Our ability to research hemp has only recently been allowed as production was largely suspended following World War II and, as such, there has been limited opportunity to develop information for empirically-based pest management recommendations. Further complicating development of integrated pest management (IPM) strategies are regulatory challenges associated with providing registration support to add hemp to pesticide labels, as it was not formally recognized as a crop by U.S. regulatory agencies until late 2019. Research needs and challenges to develop effective IPM programs for corn earworm on hemp are discussed here.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 940
Author(s):  
Olufemi S. Ajayi ◽  
Michelle Samuel-Foo

There has been a resurgence in the cultivation of industrial hemp, Cannabis sativa L., in the United States since its recent legalization. This may facilitate increased populations of arthropods associated with the plant. Hemp pests target highly marketable parts of the plant, such as flowers, stalks, and leaves, which ultimately results in a decline in the quality. Industrial hemp can be used for several purposes including production of fiber, grain, and cannabidiol. Thus, proper management of pests is essential to achieve a substantial yield of hemp in the face of climate change. In this review, we provide updates on various arthropods associated with industrial hemp in the United States and examine the potential impact of climate change on corn earworm (CEW) Helicoverpa zea Boddie, a major hemp pest. For example, temperature and photoperiod affect the development and diapause process in CEW. Additionally, drought can lead to a reduction in hemp growth. Host plant diversity of CEW may prevent populations of the pest from reaching outbreak levels. It is suggested that hemp varieties resistant to drought, high soil salinity, cold, heat, humidity, and common pests and diseases should be selected. Ongoing research on effective management of CEW in hemp is critical.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel E Winkler ◽  
Michelle Yu-Chan Lin ◽  
José Delgadillo ◽  
Kenneth J Chapin ◽  
Travis E Huxman

We studied how a rare, endemic alpine cushion plant responds to the interactive effects of warming and drought. Overall, we found that both drought and warming negatively influenced the species growth but that existing levels of phenotypic variation may be enough to at least temporarily buffer populations.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 484
Author(s):  
Syed Arif Hussain Rizvi ◽  
Justin George ◽  
Gadi V. P. Reddy ◽  
Xinnian Zeng ◽  
Angel Guerrero

Since the first identification of the silkworm moth sex pheromone in 1959, significant research has been reported on identifying and unravelling the sex pheromone mechanisms of hundreds of insect species. In the past two decades, the number of research studies on new insect pheromones, pheromone biosynthesis, mode of action, peripheral olfactory and neural mechanisms, and their practical applications in Integrated Pest Management has increased dramatically. An interdisciplinary approach that uses the advances and new techniques in analytical chemistry, chemical ecology, neurophysiology, genetics, and evolutionary and molecular biology has helped us to better understand the pheromone perception mechanisms and its practical application in agricultural pest management. In this review, we present the most recent developments in pheromone research and its application in the past two decades.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1997-2006
Author(s):  
E A Lee ◽  
P F Byrne ◽  
M D McMullen ◽  
M E Snook ◽  
B R Wiseman ◽  
...  

Abstract C-glycosyl flavones in maize silks confer resistance (i.e., antibiosis) to corn earworm (Helicoverpa zea [Boddie]) larvae and are distinguished by their B-ring substitutions, with maysin and apimaysin being the di- and monohydroxy B-ring forms, respectively. Herein, we examine the genetic mechanisms underlying the synthesis of maysin and apimaysin and the corresponding effects on corn earworm larval growth. Using an F2 population, we found a quantitative trait locus (QTL), rem1, which accounted for 55.3% of the phenotypic variance for maysin, and a QTL, pr1, which explained 64.7% of the phenotypic variance for apimaysin. The maysin QTL did not affect apimaysin synthesis, and the apimaysin QTL did not affect maysin synthesis, suggesting that the synthesis of these closely related compounds occurs independently. The two QTLs, rem1 and pr1, were involved in a significant epistatic interaction for total flavones, suggesting that a ceiling exists governing the total possible amount of C-glycosyl flavone. The maysin and apimaysin QTLs were significant QTLs for corn earworm antibiosis, accounting for 14.1% (rem1) and 14.7% (pr1) of the phenotypic variation. An additional QTL, represented by umc85 on the short arm of chromosome 6, affected antibiosis (R2 = 15.2%), but did not affect the synthesis of the C-glycosyl flavones.


Sign in / Sign up

Export Citation Format

Share Document