scholarly journals The utilization of micro-mesoporous carbon-based filler in the P84 hollow fibre membrane for gas separation

2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Triyanda Gunawan ◽  
Nurul Widiastuti ◽  
Hamzah Fansuri ◽  
Wan Norharyati Wan Salleh ◽  
Ahmad Fauzi Ismail ◽  
...  

This research involved carrying out a unique micro-mesoporous carbon particle incorporation into P84 co-polyimide membrane for improved gas separation performance. The carbon filler was prepared using a hard template method from zeolite and known as zeolite-templated carbon (ZTC). This research aims to study the loading amount of ZTC into P84 co-polyimide toward the gas separation performance. The ZTC was prepared using simple impregnation method of sucrose into hard template of zeolite Y. The SEM result showing a dispersed ZTC particle on the membrane surface and cross-section. The pore size distribution (PSD) of ZTC revealed that the particle consists of two characteristics of micro and mesoporous region. It was noted that with only 0.5 wt% of ZTC addition, the permeability was boosted up from 4.68 to 7.06 and from 8.95 to 13.15 barrer, for CO 2 and H 2 respectively when compared with the neat membrane. On the other hand, the optimum loading was at 1 wt%, where the membrane received thermal stability boost of 10% along with the 62.4 and 35% of selectivity boost of CO 2 /CH 4 and H 2 /CH 4 , respectively. It was noted that the position of the filler on the membrane surface was significantly affecting the gas transport mechanism of the membrane. Overall, the results demonstrated that the addition of ZTC with proper filler position is a potential candidate to be applicable in the gas separation involving CO 2 and H 2 .

1995 ◽  
Vol 28 (3P2) ◽  
pp. 1503-1508 ◽  
Author(s):  
Takumi Hayashi ◽  
Masayuki Yamada ◽  
Takumi Suzuki ◽  
Yuji Matsuda ◽  
Kenji Okuno

Author(s):  
P. C. Tan ◽  
D. Y. Yiauw ◽  
G. H. Teoh ◽  
S. C. Low ◽  
Z. A. Jawad

Various methods have been explored to improve the gas separation performance of polyimide membrane for more viable industrial commercialization. Generally, polyimide membrane can be synthesized via two different methods: chemical imidization and thermal imidization routes. Due to the markedly different membrane synthesis conditions, the influence of imidization methods on the gas transport properties of resulting membrane is worthy of investigation. The polyimide produced from two imidization methods was characterized for its molecular weight. In overall, the molecular weight of thermally imidized polyimide was higher than that of chemically imidized one except ODPA-6FpDA:DABA as it was prone to depropagation at high temperature. It was observed that the chemically imidized ODPA-6FpDA:DABA membrane possessed better gas separation performance than the thermally imidized counterpart. In particular, it showed 12 times higher CO2 permeability (19.21 Barrer) with CO2/N2 selectivity of 5. After crosslinking, the CO2/N2 selectivity of the polyimide membrane was further improved to 11.8 at 6 bar of permeation pressure.


2019 ◽  
Vol 15 (1) ◽  
pp. 50-53
Author(s):  
Kok Chung Chong ◽  
Yin Yin Chan ◽  
Woei Jye Lau ◽  
Soon Onn Lai ◽  
Ahmad Fauzi Ismail ◽  
...  

Oxygen enriched air (OEA) is widely applied in various areas such as chemical and medical applications. Currently, cryogenic distillation and pressure swing adsorption are the two common technologies that being commercially used for i the production of OEA. However, these two techniques are not economically favorable due to required intensive energy and large built-up area. With the advancement of membrane technology in separation process, it garners the interest from both industrial and academic to explore the feasibility of membrane in gas separation. In this study, polysulfone (PSF) hollow fiber membranes with poly(ether block amide) (PEBAX) coating were used for the separation of O2/N2 gas. The hollow fiber membranes used in this work were fabricated by phase inversion spinning process using PSF pellet, along with N,N-dimetyhlacetamide (DMAc) and ethanol (EtOH) as solvent and co-solvent, whereas tetrahydrofuran (THF) as additive. The fabricated membrane exhibited dense structure in the inner layer whereas finger like layer at the outer surface. The formation of this structure was attributed by rapid phase inversion of the solution arose from strong solvent used. The EDX surface mapping analysis confirmed the formation of PEBAX coating on the membrane surface. Gas permeation study in this work illustrated that the pristine PSF membrane exhibited better gas separation performance relative to the PEBAX coated membrane with 20% higher in terms of permeance. The results obtained from this work suggested that the PEBAX coating enhanced the membrane surface but not certain to improve the gas separation performance. Further study on the PEBAX materials for the membrane coating is essential to polish its potential in gas separation.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012019
Author(s):  
T P Kim ◽  
Z A Jawad ◽  
B L F Chin

Abstract Carbon dioxide (CO2) is responsible for approximately 80% of greenhouse gases emission that is the main source to global climate change causing notable environmental impacts. Poly (ethylene glycol) diacrylate (PEGDA) have polar PEG repeating units, which provide a strong affinity towards carbon dioxide (CO2) molecules has been blended with 3-aminopropyltrimethoxysilane (APTMS) to synthesize membrane for CO2/nitrogen (N2) separation. The new synthesized membrane is studied for potential applications in gas separation and to be implemented in control CO2 emission. APTMS is also used to delay the diffusion between polymer and solvent. In this study, concentration of polymer of PEGDA and casting solvent of APTMS in terms of mol ratio from a range of 0.9:1.1 to 1.3:0.7 is discussed. Based on the results, PEGDA membrane shows best gas separation performance at mol ratio of PEGDA to APTMS of 1:1 where the permeance for both CO2/N2, and CO2/N2 selectivity are 75.21±0.15 GPU, 22.95±0.05 GPU and 3.28±0.12, respectively. An optimal aminosilane/polymer reaction ratio benefits the gas separation performance of the membrane due to the affinity of the membrane towards CO2 and formation of different membrane surface morphology.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5086-5095
Author(s):  
Shuli Wang ◽  
Xiaohua Tong ◽  
Chunbo Wang ◽  
Xiaocui Han ◽  
Sizhuo Jin ◽  
...  

Effect of substituents on the dihedral angle and chain packing plays a critical role in the enhancement in the gas separation performance of polymer membranes.


2021 ◽  
pp. 119401
Author(s):  
Moataz Ali El-Okazy ◽  
Liang Liu ◽  
Christopher P. Junk ◽  
Erich Kathmann ◽  
Whitney White ◽  
...  

Cellulose ◽  
2017 ◽  
Vol 24 (12) ◽  
pp. 5649-5656 ◽  
Author(s):  
Xiong-Fei Zhang ◽  
Yi Feng ◽  
Chaobo Huang ◽  
Yichang Pan ◽  
Jianfeng Yao

Sign in / Sign up

Export Citation Format

Share Document