The reaction of hydrogen atoms with ethylene

A detailed study has been made of the products from the reaction between hydrogen atoms and ethylene in a discharge-flow system at 290 ± 3 K. Total pressures in the range 8 to 16 Torr (1100 to 2200 Nm -2 ) of argon were used and the hydrogen atom and ethylene flow rates were in the ranges 5 to 10 and 0 to 20 μ mol s -1 , respectively. In agreement with previous work, the main products are methane and ethane ( ~ 95%) together with small amounts of propane and n -butane, measurements of which are reported for the first time. A detailed mechanism leading to formation of all the products is proposed. It is shown that the predominant source of ethane is the recombination of two methyl radicals, the rate of recombination of a hydrogen atom with an ethyl radical being negligible in comparison with the alternative, cracking reaction which produces two methyl radicals. A set of rate constants for the elementary steps in this mechanism has been derived with the aid of computer calculations, which gives an excellent fit with the experimental results. In this set, the values of the rate constant for the addition of a hydrogen atom to ethylene are at the low end of the range of previously measured values but are shown to lead to a more reasonable value for the rate constant of the cracking reaction of a hydrogen atom with an ethyl radical. It is shown that the recombination reaction of a hydrogen atom with a methyl radical, the source of methane, is close to its third-order region.

1964 ◽  
Vol 17 (12) ◽  
pp. 1329 ◽  
Author(s):  
MFR Mulcahy ◽  
DJ Williams ◽  
JR Wilmshurst

The kinetics of abstraction of hydrogen atoms from the methyl group of the toluene molecule by methyl radicals at 430-540�K have been determined. The methyl radicals were produced by pyrolysis of di-t-butyl peroxide in a stirred-flow system. The kinetics ,agree substantially with those obtained by previous authors using photolytic methods for generating the methyl radicals. At toluene and methyl-radical concentrations of about 5 x 10-7 and 10-11 mole cm-3 respectively the benzyl radicals resulting from the abstraction disappear almost entirely by combination with methyl radicals at the methylenic position. In this respect the benzyl radical behaves differently from the iso-electronic phenoxy radical, which previous work has shown to combine with a methyl radical mainly at ring positions. The investigation illustrates the application of stirred-flow technique to the study of the kinetics of free-radical reactions.


2019 ◽  
Author(s):  
Khoa T. Lam ◽  
Curtis J. Wilhelmsen ◽  
Theodore Dibble

Models suggest BrHgONO to be the major Hg(II) species formed in the global oxidation of Hg(0), and BrHgONO undergoes rapid photolysis to produce the thermally stable radical BrHgO•. We previously used quantum chemistry to demonstrate that BrHgO• can, like OH radical, readily can abstract hydrogen atoms from sp<sup>3</sup>-hybridized carbon atoms as well as add to NO and NO<sub>2</sub>. In the present work, we reveal that BrHgO• can also add to C<sub>2</sub>H<sub>4</sub> to form BrHgOCH<sub>2</sub>CH<sub>2</sub>•, although this addition appears to proceed with a lower rate constant than the analogous addition of •OH to C<sub>2</sub>H<sub>4</sub>. Additionally, BrHgO• can readily react with HCHO in two different ways: either by addition to the carbon or by abstraction of a hydrogen atom. The minimum energy path for the BrHgO• + HCHO reaction bifurcates, forming two pre-reactive complexes, each of which passes over a separate transition state to form a different product.


1955 ◽  
Vol 33 (12) ◽  
pp. 1814-1818 ◽  
Author(s):  
W. Forst ◽  
C. A. Winkler

Hydrogen atoms produced in a discharge tube were found to react with methyl cyanide to produce hydrogen cyanide as the main product, together with smaller amounts of methane and ethane. The proposed mechanism involves the formation of hydrogen cyanide and a methyl radical in the initial step; methane and ethane are attributed to secondary reactions of the methyl radicals.


In this paper the efficiency of interaction of a hydrogen atom with a series of olefines has been determined, the olefines being members of the series obtained by progressively replacing the hydrogen atoms of ethylene by methyl radicals. The interesting generalization which emerges from this is that the efficiency of interaction does not vary very much with the nature of the alkyl substituents in the molecule, and calculations involving the heats of addition of a hydrogen atom to a double bond confirm this generalization. The data presented here are discussed critically in relation to information available on the reaction of CCl 3 radicals with olefines and of alkyl radicals with olefines, complete general agreement being demonstrated.


1979 ◽  
Vol 57 (8) ◽  
pp. 863-869 ◽  
Author(s):  
Guy J. Collin ◽  
Hélène Deslauriers ◽  
Sylvain Auclair

Photolysis of 2-methyl-1-butene (M2B1), cis-2-pentene (CP2), and 3-methyl-1-butene (M3B1) has been systematically studied at 163 nm. Pressure effect has been measured at 147, 163, and 174 nm. The main fragmentation process of the photoexcited olefine is the C—C split of the bond located in position β relative to the double bond:[Formula: see text] α-Methallyl radicals obtained in the M3B1 and CP2 photolysis decompose partly at low pressure, giving rise to the formation of 1,3-butadiene and hydrogen atoms. β-Methallyl radicals decompose also at low pressure into allene and methyl radicals. Butadiene and allene quantum yields follow the Stern–Volmer law, and this allows us to determine the ratio of the rate constant of dissociation relative to the rate constant of stabilization, kd/ks, through collision of the α- and β-methallyl radicals. From these values, we conclude that the excess of photon energy is not statistically distributed into the fragments, and that the decomposition process follows one (or several) particular law(s).


1982 ◽  
Vol 35 (10) ◽  
pp. 2013 ◽  
Author(s):  
E Rizzardo ◽  
AK Serelis ◽  
DH Solomon

Cumyloxy (1-methyl-1-phenylethoxy) radicals have been generated by thermolysis (60�) of dicumyl hyponitrite in methyl methacrylate and styrene. The carbon-centred radicals formed by interaction of cumyloxyl with the respective monomers were trapped as stable adducts of 1,1,3,3-tetramethyl-isoindolin-2-yloxyl. Extensive hydrogen atom abstraction and methyl radical generation as well as double-bond addition were observed in methyl methacrylate. Styrene underwent only double-bond addition by both cumyloxy and methyl radicals. Some possible implications of these results for polymer structure are discussed. A kinetic study of the decomposition of dicumyl hyponitrite in cyclohexane at various temperatures gave k=7.7 × 1014exp(-13600/T) s-1 for the rate constant. Rate constants for the addition of cumyloxyl to methyl methacrylate (k ≈ 2 × 104 dm3 mol-1 s-1) and styrene (k≈2 × 105 dm3 mol-1 s-1) at 60�have been estimated.


1966 ◽  
Vol 44 (20) ◽  
pp. 2357-2367 ◽  
Author(s):  
M. C. Lin ◽  
M. H. Back

The rate of the elementary dissociation of ethane into two methyl radicals has been measured in its pressure-dependent region at temperatures from 913–999 °K and at pressures from 1–200 mm. The high-pressure first-order rate constant obtained by extrapolation was in agreement with that obtained at lower temperatures,[Formula: see text]Comparison with calculated Kassel curves showed that the best fit of the data was obtained with the Kassel parameter s = 12 ± 1. The high-pressure first-order rate constant for the decomposition of the ethyl radical was obtained by extrapolation of the data reported in Part I, assuming the rate constant for combination of ethyl radicals is independent of temperature.[Formula: see text]From the measured constant for the dissociation of ethane, the rate constant for the combination of methyl radicals was calculated and compared with the values measured in a lower temperature region. Differences in the values of the rate constants and in the shapes of the unimolecular falloff curves are discussed.


1969 ◽  
Vol 47 (16) ◽  
pp. 2987-3001 ◽  
Author(s):  
Nobuo Yokoyama ◽  
R. K. Brinton

Methyl radicals generated by di-t-butylperoxide pyrolysis interact at comparable rates with cis-butene-2 in the gas phase by both addition and hydrogen atom abstraction. The determination of the rate of these reactions was simplified by the addition of a large concentration of acetaldehyde to the system. The additive, a source of low activation energy abstractable hydrogen atoms, was effective in suppressing polymerization reactions, and in addition, maintained a high steady state methyl radical concentration as a result of the carbonyl radical decomposition. The rate constants, k5 and k6 for the reactions [5] and [6], were determined to be 4.5 × 1010exp (−7000/RT)and 1.8 × 1010exp (−7300/RT)[Formula: see text]cm3 mole−1 s−1, respectively, over the temperature range 126–163 °C. The butenyl radical formed in reaction [6] isomerizes much faster than its interaction with other species in the system, and the distribution of the various conformations is similar to the equilibrium distribution of the butenes at a similar temperature.


Sign in / Sign up

Export Citation Format

Share Document