Interpretation of the isotope shifts in the arc spectrum of xenon

From the experimental results of Jackson & Coulombe (1974) and Vetter (1970) in the arc spectrum of xenon, the isotope shifts of 30 levels in the low configurations 5p56s, 5p56p, 5p55d and 5p57p are obtained, for the mass numbers 136, 134, 132, 130 and 128. A parametric study of these shifts for each isotope is made, with 3 parameters for the even levels and 6 for the odd levels. Following the conclusions of Jackson & Coulombe (1974), the respective contributions of mass- and field-effects to the shifts of the levels and to the parameters are evaluated from King diagrams. The ab initio values obtained for the parameters through the Hartree-Fock nonrelativistic and relativistic methods show a satisfactory agreement with the experimental values.

1991 ◽  
Vol 69 (11) ◽  
pp. 1845-1856 ◽  
Author(s):  
J. F. Sullivan ◽  
Aiying Wang ◽  
Mei-Shiow Cheng ◽  
J. R. Durig

The Raman spectra (3200–50 cm−1) of gaseous, liquid, and solid 2-chloropropane-d3 (isopropyl-d3 chloride), CH3(CD3)CHCl, and the infrared spectra (3200–50 cm−1) of the gas and solid have been recorded. The torsional transitions observed in the far infrared spectrum of the gaseous sample recorded at a resolution of 0.10 cm−1 between 265 and 135 cm−1 were analyzed in terms of the semirigid rotor model. An effective barrier of 1378 ± 4 cm−1 (3.94 ± 0.01 kcal/mol), cosine–cosine coupling term of 166 ± 10 cm−1 (0.47 ± 0.03 kcal/mol), and sine–sine coupling term of −173 ± 1 cm−1 (−0.49 ± 0.01 kcal/mol) were determined by fitting ten observed frequencies arising from the CH3 and CD3 torsions. The assignment of the 27 fundamentals is given and discussed. A complete equilibrium geometry, barrier to internal rotation, and vibrational frequencies have been determined by ab initio Hartree–Fock gradient calculations employing either 3-21G* or 6-31G* basis sets for both the d0 and d3 species. These calculated results are compared to the experimental values as well as to the corresponding quantities for some similar molecules. Key words: 2-chloropropane, vibrational spectrum; ab initio calculations; barrier to internal rotation.


1973 ◽  
Vol 26 (5) ◽  
pp. 921 ◽  
Author(s):  
RD Brown ◽  
GR Williams

The simplified ab-initio molecular-orbital method described previously is particularly suited to the calculation of polarizabilities by the non-perturbative coupled Hartree-Fock technique. Trial calculations on CO and HF, for which comparison with corresponding ab-initio calculations is possible, show that the method gives an adequate numerical performance. Minimal basis set calculations in general tend to give values that are considerably too low because of inadequate flexibility of the basis and this is the origin of the large discrepancy between theory and experiment, especially for small molecules. ��� Results are also reported for N2O and O3. For these larger systems the SAI results with minimal basis sets are noticeably nearer experimental values. The polarizability anisotropy for N2O is particularly well reproduced by the SAI method. �


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Ran Si ◽  
Sacha Schiffmann ◽  
Kai Wang ◽  
Chong Yang Chen ◽  
Michel Godefroid

1998 ◽  
Vol 63 (9) ◽  
pp. 1295-1308 ◽  
Author(s):  
Benoît Champagne ◽  
Thierry Legrand ◽  
Eric A. Perpete ◽  
Olivier Quinet ◽  
Jean-Marie André

CHF/6-311G* calculations of the first electronic and vibrational hyperpolarizabilities reveal that merocyanines present a substantial βv/βe ratio under their quinonoid nonpolar form. It originates from a large vibrational first hyperpolarizability whereas its electronic counterpart is small for this class of push-pull π-conjugated molecules. The transition from the quinonoid to the aromatic configuration is accompanied by an increase of βe and a decrease of the βv/βe ratio as well as by a ≈ 180° rotation in the plane of the molecule of βe and βv with respect to the molecular frame. Our results support the recent experimental discovery that antiparallel aggregation of aromatic and quinonoid forms of merocyanine is energetically favoured and that their first hyperpolarizabilities, which combine constructively, present both electronic and non purely electronic origins.


1999 ◽  
Vol 597 ◽  
Author(s):  
Steven Trohalaki ◽  
Robert J. Zellmer ◽  
Ruth Pachter

AbstractSpangler and He [1,2] have shown that dithienyl polyenes form extremely stable bipolaronic dications when oxidatively doped in solution. Previous theoretical studies applied empirical methods to predict bipolaronic enhancement of hyperpolarizabilities for simple polyenes [3,4]. Here, we employ density functional theory to optimize the gas-phase molecular conformations of neutral, cationic, and dicationic forms of a series of dithienyl polyenes, where the number of ethene units, N, is varied from 1–5. Ab initio Hartree-Fock, generalized valence bond, configuration interaction, and Møller-Plesset calculations demonstrate that the dications are farily well described with a closed shell and therefore have little biradicaloid character. Second hyperpolarizabilities, γ, are subsequently calculated using ab initio Hartree-Fock theory and a finite field methodology. As expected, γ increases with the number of ethene units for a given molecular charge. The cations also show the largest increase in γ with N. For a given value of N, the cations display the largest γ values. However, if we treat the dication as a triplet, which might be present in solution, then it displays the largest γ.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Eric Paquet ◽  
Herna L. Viktor

Ab initio molecular dynamics is an irreplaceable technique for the realistic simulation of complex molecular systems and processes from first principles. This paper proposes a comprehensive and self-contained review of ab initio molecular dynamics from a computational perspective and from first principles. Quantum mechanics is presented from a molecular dynamics perspective. Various approximations and formulations are proposed, including the Ehrenfest, Born–Oppenheimer, and Hartree–Fock molecular dynamics. Subsequently, the Kohn–Sham formulation of molecular dynamics is introduced as well as the afferent concept of density functional. As a result, Car–Parrinello molecular dynamics is discussed, together with its extension to isothermal and isobaric processes. Car–Parrinello molecular dynamics is then reformulated in terms of path integrals. Finally, some implementation issues are analysed, namely, the pseudopotential, the orbital functional basis, and hybrid molecular dynamics.


2007 ◽  
Vol 21 (13n14) ◽  
pp. 2204-2214 ◽  
Author(s):  
BEATE PAULUS

The method of increments is a wavefunction-based ab initio correlation method for solids, which explicitly calculates the many-body wavefunction of the system. After a Hartree-Fock treatment of the infinite system the correlation energy of the solid is expanded in terms of localised orbitals or of a group of localised orbitals. The method of increments has been applied to a great variety of materials with a band gap, but in this paper the extension to metals is described. The application to solid mercury is presented, where we achieve very good agreement of the calculated ground-state properties with the experimental data.


2003 ◽  
Vol 58 (5-6) ◽  
pp. 363-372 ◽  
Author(s):  
Y. Elerman ◽  
H. Kara ◽  
A. Elmali

The synthesis and characterization of [Cu2(L1)(3,5 prz)] (L1=1,3-Bis(2-hydroxy-3,5-chlorosalicylideneamino) propan-2-ol) 1 and of [Cu2(L2)(3,5 prz)] (L2=1,3-Bis(2-hydroxy-bromosalicylideneamino) propan-2-ol) 2 are reported. The compounds were studied by elemental analysis, infrared and electronic spectra. The structure of the Cu2(L1)(3,5 prz)] complex was determined by x-ray diffraction. The magnetochemical characteristics of these compounds were determined by temperaturedependent magnetic susceptibility measurements, revealing their antiferromagnetic coupling. The superexchange coupling constants are 210 cm−1 for 1 and 440 cm−1 for 2. The difference in the magnitude of the coupling constants was explained by the metal-ligand orbital overlaps and confirmed by ab-initio restricted Hartree-Fock (RHF) calculations. In order to determine the nature of the frontier orbitals, Extended Hückel Molecular Orbital (EHMO) calculations are also reported.


Sign in / Sign up

Export Citation Format

Share Document