The crystal and molecular structure of quaterrylene: a redetermination

The crystal structure of quaterrylene, C 40 H 20 -first studied with limited two dimensional X-ray data in 1960 - has been redetermined with three dimensional data. Some 2816 independent reflexions have been measured. Fullmatrix least-squares refinement with large matrices of up to 200 parameters has reduced Rto 4.00 % for the 1162 reflexions with intensities significantly above background and 11.04% for the total data set. Carbon atom positions were refined anisotropically and C-C distances have been determined with an estimated standard deviation of ±0.004 A. The average length of the six pen-bonds is 1.465(5) Å . These can be divided into two chemically equivalent sets with an average length of 1.467(3) Å for the four outer bonds and 1.462(6) Å for the central pair. The crystal contains dimers consisting of two centro-symmetrically related molecules separated by a mean perpendicular distance of 3.41 Å . This is smaller than the corresponding separation in a-perylene, and approaches the interlayer spacing in graphite. There are small, significant deviations from planarity in the quaterrylene molecule at least some of which seem to be related to the interactions between the two molecules of the dimer.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.


1997 ◽  
Vol 52 (2) ◽  
pp. 256-258 ◽  
Author(s):  
Evgeni V. Avtomonov ◽  
Rainer Grüning ◽  
Jörg Lorberth

Abstract The crystal structure of the title compound has been determined by X-ray diffraction methods. Due to the Lewis acidic character of the iodine substituent a “zig-zag” chain is formed via intermolecular interactions (2.933(4) A) between iodine and oxygen atoms of theocarbamate moiety. A three-dimensional network is formed through hydrogen-bridging (2.04 A) between NH-groups and the oxygen atoms of the neighbouring carbamate group of the next molecule.


1975 ◽  
Vol 53 (13) ◽  
pp. 1949-1957 ◽  
Author(s):  
Roderic J. Restivo ◽  
Abraham Costin ◽  
George Ferguson ◽  
Arthur J. Carty

Copper(I) perchlorate, nitrate, and acetylacetonate complexes of the types Cu(triphos)ClO4 (triphos = CH3C(CH2PPh2)3), Cu(Cy3P)2ClO4 (Cy3P = P(C6H11)3), Cu(triphos)NO3, Cu(Cy3P)2(HFac)(HFac = hexafluoroacetylacetonate), and Cu (Cy3P)2(TtFac) (TtFac = thienyltrifluoroacetylacetonate) have been synthesized by reduction of the corresponding perchlorate, nitrate, and acetylacetonates with tertiary phosphines. Infrared spectra indicate the presence of monodentate perchlorate groups in Cu(triphos)ClO4 and in Cu(Cy3P)2ClO4 and the crystal structure of the latter has been determined by a three-dimensional X-ray analysis using diffractometer data. The crystals are monoclinic, space group C2/c, with cell dimensions a = 18.159(6), b = 9.493(2), c = 22.182(3) Å, and β = 95.41(2)° and four molecules per unit cell. The structure was refined by block-diagonal least squares methods to a final R of 0.051 for 2617 reflections using anisotropic thermal parameters for the nonhydrogen atoms. The structure consists of discrete Cu(Cy3P)2ClO4 molecules with symmetry C2 separated by normal van der Waals distances. The copper atom is three-coordinate and the perchlorate anion is monodentate but disordered over two sites. Principal dimensions include: Cu—P 2.262(1) Å, Cu—O 2.220(7) Å, [Formula: see text][Formula: see text] and 99.8(2)°, and [Formula: see text]


1982 ◽  
Vol 47 (10) ◽  
pp. 2623-2632 ◽  
Author(s):  
Viktor Vrábel ◽  
Jan Lokaj ◽  
Ján Garaj ◽  
František Pavelčík

The crystal structure of [Cu(H2O)(en)2][Cu2(CN)3(SeCN)] was solved by single crystal X-ray structural analysis in the triclinic system with a space group of P1 and in the monoclinic system with a space group of C2. In the triclinic system the unit cell has dimensions of a = 0.8445(3), b = 0.7903(3), c = 0.8444(3) nm, α = 119.58(2), β = 118.59(2) and γ = 93.63(3)° and, in the monoclinic system, a = 1.3331(4), b = 0.8670(2), c = 0.8267(3), β = 122.60(2)°. The structure was refined by the least squares method to final value of R = 5.5% in the triclinic system and R = 7.8% in the monoclinic system. The coordination sphere around the Cu(II) atom is square pyramidal, formed of two ethylenediamine molecules and one water molecule. The Cu(I) atoms are tetrahedrally coordinated by bridging SeCN and CN ligands to form infinite three-dimensional chains. The SeCN group is bonded to the Cu(I) atoms through the Se atom at distances of 0.2731(3) and 0.2745(3) nm.


1983 ◽  
Vol 36 (4) ◽  
pp. 683 ◽  
Author(s):  
BF Hoskins ◽  
RJ Steen

The crystal structure of the complex Mn2(CO)8(dam) (dam = Ph2AsCH2AsPh2) has been determined by three-dimensional X-ray diffraction methods. The crystals are triclinic, space group P1, with a 11.191(1), b 16.498(5), c 9.455(1) �, a 93.64(2), β 109.08(2), γ 89.36(2)� and contain two discrete, binuclear molecules of Mn2(CO)8(dam) per unit cell. The structure, solved by direct and Fourier methods, was refined by a least-squares procedure to R and Rw of 0.065 and 0.082 respectively for 1907 independent, statistically significant reflections collected by counter methods. The feature of particular interest in this compound is the accommodation of the bridging bidentate dam ligand [As.. .As separation 3.242(2) �] across a shorter Mn�-Mn� bond [2.962(3) �] which constrains the molecule so that a much less staggered configuration of the two manganese coordination octahedra is observed relative to the parent compound Mn2(CO)10, the rotation of the two equatorial planes in the former being 30�.


Author(s):  
A. P. Bozopoulos ◽  
C. A. Kavounis ◽  
G. A. Stergioudis ◽  
P. J. Rentzeperis ◽  
A. Varvoglis

AbstractThe crystal and molecular structure of the title compound (BPIS hereafter) has been determined from three-dimensional X-ray data, measured on a computer-controlled STOE AED 2 diffractometer. The structure is triclinic Space groupThe structure was solved by Patterson and Fourier syntheses and refined by least-squares calculations to a finalTwo I-C


1972 ◽  
Vol 50 (9) ◽  
pp. 1315-1320 ◽  
Author(s):  
J. Brian Faught

The crystal structure of tetrameric phosphonitrilic isothiocyanate, N4P4(NCS)8, has been determined by three-dimensional X-ray studies from data collected on a Picker FACS-1 automated diffractometer. The compound crystallizes in the triclinic space group [Formula: see text] with a = 8.098(8), b = 8.018(7), c = 9.937(10) Å, α = 104.08(7), β = 99.42(7), γ = 95.42(7)°, and one molecule per unit cell. The structure was solved from 1766 independent non-zero reflections and refined to a conventional R factor of 0.063. Nitrogen atoms of two isothiocyanate groups are bonded to each phosphorus atom of the eight-membered phosphorus–nitrogen ring. The ring has a chair configuration. The average dimensions of the structure are P—Nring = 1.543 + 0.017, P—Nisothiocyanate = 1.644 ± 0.011, N—C = 1.168 ± 0.008, C—S = 1.535 + 0.009 Å, [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] and NĈS = 176.6 ± 1.1°.


1980 ◽  
Vol 33 (6) ◽  
pp. 1323 ◽  
Author(s):  
JB Bremner ◽  
EJ Browne ◽  
PE Davies ◽  
CLWAH Raston

The heterocyclic derivatives, 8,9-dimethoxy-3-methyl-1-phenyl-3,4,5,6- tetrahydro-1H-2,3-benzoxazocine(3a) and 9,10-dimethoxy-3-methyl-1- phenyl-1,3,4,5,6,7-hexahydro-2,3-benzoxazonine (3b),examples of two new ring systems, have been prepared by Meisenheimer rearrangement of the corresponding 2-benzazepine and 2-benzazocine N-oxide derivatives (2a) and (2b). The Bischler-Napieralski-type cyclization reaction was used in the preparation of the tertiary amine precursors of these N-oxides reaction conditions for the cyclization were critical and phosphorus oxychloride in refluxing butanenitrile was found to give the best yields of the seven- or eight-membered cyclic imine intermediates. Reductive cleavage of the benzoxazocine derivative (3a) with zinc in acetic acid followed by N-methylation gave the expected product, [2-{3- (dimethylamino)propyl}-4,5-di-methoxyphenyl]phenylmethanol (12). The crystal and molecular structure of (3a) has been determined by X-ray crystallographic analysis.


1979 ◽  
Vol 34 (3) ◽  
pp. 434-436 ◽  
Author(s):  
A. Müller ◽  
S. Pohl ◽  
M. Dartmann ◽  
J. P. Cohen ◽  
J. M. Bennett ◽  
...  

Abstract The novel tri-nuclear metal-sulfur cluster [Mo3S(S2)6]2- can be obtained as its ammonium salt by the reaction of a Moiv containing aqueous solutions with polysulfide. Its crystal and molecular structure has been determined by a single crystal X-ray study. The crystals are monoclinic (space group Cm, with a = 11.577(6) Å, b = 16.448(7) Å, c = 5.716(2) Å, β = 117.30(3)°, V = 967.2 Å3 , Z = 2, dexptl. = 2.54(2) g/cm3 , dcal = 2.54 g/cm3). The structure consists of isolated [Mo3S(S2)6]2- units, with three Mo atoms at the vertices of a triangle. There are bridging as well as terminal S22--ligands lying above and below the Mo3-plane (bond distances: Mo-Mo = 2.722 Å, Mo-S(terminal) = 2.435, Mo-S(bridging) = 2.452, Mo3-S = 2.353(4) Å and S-S = 2.04 Å (mean values)).


1988 ◽  
Vol 41 (3) ◽  
pp. 293 ◽  
Author(s):  
JB Bremner ◽  
EJ Browne ◽  
LM Engelhardt ◽  
IWK Gunawardana ◽  
AH White

Meisenheimer rearrangement of the N-oxides (4) derived from a series of 5-aryl-4-methyl-2,3,4,5-tetrahydro-1,4-benzoxazepines (3) gave rise to eight derivatives (5) of the new 2H,6H-1,5,4-benzodioxazocine ring system. Reaction of 9-methoxy-5-methyl-6-phenyl-3,4,5,6- tetrahydro-2H-1,5-benzoxazocine (6) with 3-chloroperoxybenzoic acid gave an unstable N-oxide (7). A Meisenheimer rearrangement product from (7), 10-methoxy-5-methyl-7-phenyl-2,3,4,5-tetrahydro-7 H-1,6,5- benzodioxazonine (8), the first example of this ring system, was isolated directly in moderate yield on oxidation of (6) with cooling. The crystal and molecular structure of (8) has been determined by X-ray crystallographic methods.


Sign in / Sign up

Export Citation Format

Share Document