The elastohydrodynamic lubrication of piston rings

The piston seal that separates the hostile environment of the combustion chamber from the crankcase that contains the lubricant is an essential machine element in reciprocating engines. The sealing force pressing the piston rings against the cylinder liner varies with the combustion chamber pressure to form an effective self-adjusting mechanism. The conjunctions between piston rings and cylinder liners are thus subjected to cyclic variations of load, entraining velocity and effective lubricant temperature as the piston reciprocates within the cylinder. Recent theoretical and experimental studies have confirmed that piston rings enjoy hydrodynamic lubrication throughout most of the engine cycle, but that a transition to mixed or boundary lubrication can be expected near top dead centre. The purpose of the present paper is to examine the suggestion that elastohydrodynamic lubrication might contribute to the tribological performance of the piston seal, particularly near top dead centre. The mode of lubrication in eight four-stroke and six two-stroke diesel engines is assessed in terms of the dimensionless viscosity and elasticity parameters proposed by Johnson (1970), and the associated map of lubrication régimes. The survey indicates unequivocally that elastohydrodynamic action can be expected during part of the stroke in all the engines considered. In the second part of the paper a detailed examination of the influence of elastohydrodynamic action in one particular engine is presented to confirm the general findings recorded in the study of lubrication régimes. Current analysis of the lubrication of rigid piston rings already takes account of the variation of surface temperature along the cylinder liner and its influence upon lubricant viscosity. It is shown that, when the enhancing influence of pressure upon viscosity is added to the analysis of rigid piston rings, the predicted cyclic minimum film thickness is more than doubled. Full elastohydrodynamic action, involving both local distortion of the elastic solids and the influence of pressure upon viscosity, results in a fourfold increase in film thickness. It is further shown that it is necessary to take account of the variation of squeeze-film velocity throughout the lubricated conjunction at each crank angle if reliable predictions of film shape and thickness are to be achieved. It is thus concluded that the wave of elastic deformation, which ripples up and down the cylinder liners many times each second in diesel engines, together with the associated local elastic deformations on the piston rings themselves, combine with the influence of pressure upon lubricant viscosity to enhance the minimum oil film thickness in the piston seal by elastohydrodynamic action.

2018 ◽  
Vol 70 (4) ◽  
pp. 687-699 ◽  
Author(s):  
Thomas Wopelka ◽  
Ulrike Cihak-Bayr ◽  
Claudia Lenauer ◽  
Ferenc Ditrói ◽  
Sándor Takács ◽  
...  

Purpose This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of the cylinder liner in the boundary lubrication regime. Design/methodology/approach Conventional nitrided steel, as well as diamond-like carbon and chromium nitride-coated piston rings, were tested against cast iron, AlSi and Fe-coated AlSi cylinder liners. The experiments were carried out with samples produced from original engine parts to have the original surface topography available. Radioactive tracer isotopes were used to measure cylinder liner wear continuously, enabling separation of running-in and steady-state wear. Findings A ranking of the material pairings with respect to wear behaviour of the cylinder liner was found. Post-test inspection of the cylinder samples by scanning electron microscopy (SEM) revealed differences in the wear mechanisms for the different material combinations. The results show that the running-in and steady-state wear of the liners can be reduced by choosing the appropriate material for the piston ring. Originality/value The use of original engine parts in a closely controlled tribometer environment under realistic loading conditions, in conjunction with continuous and highly sensitive wear measurement methods and a detailed SEM analysis of the wear mechanisms, forms an intermediate step between engine testing and laboratory environment testing.


Author(s):  
Sylvester Abanteriba

The compression and oil rings of the piston engine play a very important role in the performance and reliability of the piston engine. The rings are required to accomplish three main distinct tasks: 1. Sealing the combustion chamber gas from the crankcase to eliminate blow-by phenomenon, which constitutes the flow of some of the contents of the combustion chamber into the crankcase. 2. Proper distribution of the lubricating oil film over the piston skirt and cylinder liner. 3. Transfer of heat from piston to cylinder liner. Unfortunately the piston ring pack contributes to the highest proportion of the frictional losses in the engine and is more prone to high wear rates. In the engine, the compression rings are designed to provide effective sealing of the crankcase against the gases from the combustion chamber. The oil-rings provide an effective means of distributing the lubricating oil over the cylinder liner while keeping it from flowing into the combustion chamber. The ability of the compression rings to serve as a gas seal depends on their axial position within the groove. The ring needs to be in contact with the lower flank in order to provide the requisite sealing effect. Once the ring lifts itself from the lower flank its ability to act as an effective seal is compromised. The axial motion of the piston rings during the operation of the engine engenders blow-by and therefore has deteriorating effect on the engine performance. Not much work has, hereto, been done to study the impact of altitude on the movement of the piston rings and hence the blow-by phenomenon. This papers presents a simulation model to investigate this effect.


1978 ◽  
Vol 20 (6) ◽  
pp. 345-352 ◽  
Author(s):  
S. L. Moore ◽  
G. M. Hamilton

Miniature pressure and film thickness transducers mounted in the cylinder liner of a diesel engine have been used to study the lubrication of piston rings. The method of using the gauges to determine oil starvation in the inlet of the rings is described and results from a working engine are presented. Calculations for both starved and fully flooded rings have been carried out and are compared with the measured results.


2017 ◽  
Vol 739 ◽  
pp. 164-168
Author(s):  
Li Ming Chu ◽  
Jaw Ren Lin ◽  
Yuh Ping Chang

This paper presents a novel experiment method to investigate the microscopic mechanism of the oil film under the pure squeeze elastohydrodynamic lubrication (EHL) motion. An optical EHL squeeze tester is used to measure the interference fringe patterns of the contact region. In order to show the dimple thickness clearly, the grayscale interferometry method is employed to obtain the film thickness map. In addition, the effects of squeeze speed, load, and lubricant viscosity on the dimple film thickness are explored under a quasi-static condition.


1974 ◽  
Vol 188 (1) ◽  
pp. 253-261 ◽  
Author(s):  
G. M. Hamilton ◽  
S. L. Moore

A capacity gauge has been designed for operating in the conditions of a working engine. The method of using it for determining the oil-film thickness and piston-ring profile is described. Oil-film thicknesses in the range 0·4-2·5 μm between the piston rings and the cylinder liner have been observed. Their variation with speed, load and temperature has been measured and it is concluded that their behaviour is essentially hydrodynamic.


2012 ◽  
Vol 538-541 ◽  
pp. 1945-1951 ◽  
Author(s):  
Yu Xue ◽  
Tong Shu Hua ◽  
Hao Yang Sun

To reveal the principle of the close effect about the EHL finite roller, contraposing the log-convex roller, the finite line contact EHL film shape and thickness were observed through self-made heavy-load optical EHL experimental device. Experiments were carried out under several different pressure and viscosity, and three groups of interference pictures were obtained under three different entrainment velocities. As the load increased, both the length and width of the roller contact area added, and the width of the contact zone in the end was larger than that in the centre, the close effect was more obvious; when the entrainment velocity and lubricant viscosity increased, the film thickness in the central roller became thicker while the increase in the roller end was little, the high film thickness difference enhanced the close effect. The entrainment velocity, load and lubricant viscosity all have great effect on the EHL characteristics of the finite roller.


1999 ◽  
Vol 121 (4) ◽  
pp. 872-878 ◽  
Author(s):  
Jianbin Luo ◽  
Ping Huang ◽  
Shizhu Wen ◽  
Lawrence K. Y. Li

Characteristics of a liquid lubricant film at the nanometer scale are discussed in the present paper. The variations of the film thickness in a central contact region between a glass disk and a super-polished steel ball with lubricant viscosity, rolling speed, substrate surface tension, running time, load, etc. have been investigated. Experimental results show that the variation of film thickness in the thin film lubrication (TFL) regime is largely different from that in the elastohydrodynamic lubrication (EHL) regime. The critical transition point from EHL to TFL is closely related to lubricant viscosity, surface energy of substrates, and so on. The film in TFL is much thicker than that calculated from the Hamrock-Dowson formula. An unusual behavior of the lubricant film has also been observed when the effect of the running time on the film thickness is considered. The time effect and the formation mechanism of the enhanced film in the running process have been discussed.


1994 ◽  
Vol 29 (3) ◽  
pp. 261-267
Author(s):  
Keijiro Tayama ◽  
Kazuhiko Maekawa ◽  
Keizo Gotoh ◽  
Noriyasu Inenaga

Sign in / Sign up

Export Citation Format

Share Document