Characteristics of Liquid Lubricant Films at the Nano-Scale

1999 ◽  
Vol 121 (4) ◽  
pp. 872-878 ◽  
Author(s):  
Jianbin Luo ◽  
Ping Huang ◽  
Shizhu Wen ◽  
Lawrence K. Y. Li

Characteristics of a liquid lubricant film at the nanometer scale are discussed in the present paper. The variations of the film thickness in a central contact region between a glass disk and a super-polished steel ball with lubricant viscosity, rolling speed, substrate surface tension, running time, load, etc. have been investigated. Experimental results show that the variation of film thickness in the thin film lubrication (TFL) regime is largely different from that in the elastohydrodynamic lubrication (EHL) regime. The critical transition point from EHL to TFL is closely related to lubricant viscosity, surface energy of substrates, and so on. The film in TFL is much thicker than that calculated from the Hamrock-Dowson formula. An unusual behavior of the lubricant film has also been observed when the effect of the running time on the film thickness is considered. The time effect and the formation mechanism of the enhanced film in the running process have been discussed.

2017 ◽  
Vol 739 ◽  
pp. 164-168
Author(s):  
Li Ming Chu ◽  
Jaw Ren Lin ◽  
Yuh Ping Chang

This paper presents a novel experiment method to investigate the microscopic mechanism of the oil film under the pure squeeze elastohydrodynamic lubrication (EHL) motion. An optical EHL squeeze tester is used to measure the interference fringe patterns of the contact region. In order to show the dimple thickness clearly, the grayscale interferometry method is employed to obtain the film thickness map. In addition, the effects of squeeze speed, load, and lubricant viscosity on the dimple film thickness are explored under a quasi-static condition.


2014 ◽  
Vol 1025-1026 ◽  
pp. 32-36 ◽  
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the performance characteristics of thermo-elastohydrodynamic lubrication (TEHL) in line contact with non-Newtonian liquid–solid lubricant. The time independent Reynolds equation, energy equation, elastic equation and load carrying with solid particle equation were formulated for compressible fluid. Newton-Raphson method and multigrid technique were implemented to obtain film thickness, film pressure, film temperature, friction coefficient and load carrying with solid particle equation in the contact region at various concentrations of solid lubricant and applied loads. The simulation results showed that film thickness and film temperature increase but film pressure decreases when solid particles are added into liquid lubricant. The maximum film temperature and load carrying of solid particle increased but friction coefficient decreased when concentration of solid particle increased. For increasing applied loads, the minimum film thickness decreases but maximum film temperature and friction coefficient increase for all liquid lubricant and liquid-solid lubricants.


1969 ◽  
Vol 91 (3) ◽  
pp. 464-475 ◽  
Author(s):  
P. E. Fowles

Conventional elastohydrodynamic theory is modified and applied to the collision between two idealized surface asperities in an isothermal sliding system. Solutions for the pressure and film thickness between the asperities as functions of their overlap, the sliding speed, the pressure-viscosity coefficient of the lubricant, and the time since the initiation of the collision are obtained numerically for the first half of the collision process. It is shown that extremely high pressures and small film thicknesses are to be expected at the center of the contact region assuming the rheology of the lubricant film can be represented by that of the bulk lubricant.


2013 ◽  
Vol 420 ◽  
pp. 30-35
Author(s):  
Khanittha Wongseedakaew ◽  
Jesda Panichakorn

This paper presents the effects of rough surface air-soft elastohydrodynamic lubrication (EHL) of rollers for soft material under the effect of air molecular slip. The time independent modified Reynolds equation and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel methods were used to obtain the film pressure profiles and film thickness in the contact region. The effects of amplitude of surface roughness, modulus of elasticity and air inlet temperature are examined. The simulation results showed surface roughness has effect on film thickness but it little effect to air film pressure. When the amplitude of surface roughness and modulus of elasticity increased, the air film thickness decreased but air film pressure increased. However, the air inlet temperature increased when the air film thickness increased.


2002 ◽  
Vol 124 (4) ◽  
pp. 811-814 ◽  
Author(s):  
Chaohui Zhang ◽  
Jianbin Luo ◽  
Shizhu Wen

In this paper, a viscosity modification model is developed which can be applied to describe the thin film lubrication problems. The viscosity distribution along the direction normal to solid surface is approached by a function proposed in this paper. Based on the formula, lubricating problem of thin film lubrication (TFL) in isothermal and incompressible condition is solved and the outcome is compared to the experimental data. In thin film lubrication, according to the computation outcomes, the lubrication film thickness is much greater than that in elastohydrodynamic lubrication (EHL). When the velocity is adequately low (i.e., film thickness is thin enough), the pressure distribution in the contact area is close to Hertzian distribution in which the second ridge of pressure is not obvious enough. The film shape demonstrates the earlobe-like form in thin film lubrication, which is similar to EHL while the film is comparatively thicker. The transformation relationships between film thickness and loads, velocities or atmosphere viscosity in thin film lubrication differ from those in EHL so that the transition from thin film lubrication to EHL can be clearly seen.


1992 ◽  
Vol 114 (2) ◽  
pp. 290-296 ◽  
Author(s):  
G. Poll ◽  
A. Gabelli

The development of models for the elastohydrodynamic lubrication of rotary lip seals requires the measurement of the film thickness under a real seal. A new method has been developed for this purpose which is based on the use of lubricant oils in which magnetite particles are suspended (so-called magnetic fluids). A change in the fluid film thickness will create a change in the impedance of the coil of the measuring circuit, the magnetic flux of which is directed through the oil film of the contact area. The advantage of this technique is that minimal modifications have to be applied to the tribological system under examination. Initial measurements carried out with a model rubber lip seal provided new insight into the build-up of a lubricant film as a function of the rotary speed and allowed comparison with the results of a theoretical model for the analysis of lip seal lubrication developed in parallel.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Shanhua Qian ◽  
Dan Guo ◽  
Shuhai Liu ◽  
Xinchun Lu

Lubricant flow properties of polyalphaolefin (PAO) oil have been experimentally investigated based on a ball-on-disc configuration under micro oil supply condition. The oil pool shape and central film thickness in the contact region were obtained using fluorescence microscopy and optical interferometry, respectively. It has been found that the relative length between the inlet meniscus and Hertzian center point in the oil pool to Hertzian radius was much larger than 1 in a smaller lubricant supply of 20 μl, and the corresponding contact region initially entered the elastohydrodynamic lubrication (EHL) region and then became starved with the increasing speed. The variations of the relative film thickness as a function of starvation degree and the ratio of relative length to Hertzian radius were proposed to explain the obtained results. Besides, the fluorescence technique was used to directly observe the inlet meniscus position of the oil pool and helped to gain more understanding of the lubricant flow properties under micro oil supply condition.


The piston seal that separates the hostile environment of the combustion chamber from the crankcase that contains the lubricant is an essential machine element in reciprocating engines. The sealing force pressing the piston rings against the cylinder liner varies with the combustion chamber pressure to form an effective self-adjusting mechanism. The conjunctions between piston rings and cylinder liners are thus subjected to cyclic variations of load, entraining velocity and effective lubricant temperature as the piston reciprocates within the cylinder. Recent theoretical and experimental studies have confirmed that piston rings enjoy hydrodynamic lubrication throughout most of the engine cycle, but that a transition to mixed or boundary lubrication can be expected near top dead centre. The purpose of the present paper is to examine the suggestion that elastohydrodynamic lubrication might contribute to the tribological performance of the piston seal, particularly near top dead centre. The mode of lubrication in eight four-stroke and six two-stroke diesel engines is assessed in terms of the dimensionless viscosity and elasticity parameters proposed by Johnson (1970), and the associated map of lubrication régimes. The survey indicates unequivocally that elastohydrodynamic action can be expected during part of the stroke in all the engines considered. In the second part of the paper a detailed examination of the influence of elastohydrodynamic action in one particular engine is presented to confirm the general findings recorded in the study of lubrication régimes. Current analysis of the lubrication of rigid piston rings already takes account of the variation of surface temperature along the cylinder liner and its influence upon lubricant viscosity. It is shown that, when the enhancing influence of pressure upon viscosity is added to the analysis of rigid piston rings, the predicted cyclic minimum film thickness is more than doubled. Full elastohydrodynamic action, involving both local distortion of the elastic solids and the influence of pressure upon viscosity, results in a fourfold increase in film thickness. It is further shown that it is necessary to take account of the variation of squeeze-film velocity throughout the lubricated conjunction at each crank angle if reliable predictions of film shape and thickness are to be achieved. It is thus concluded that the wave of elastic deformation, which ripples up and down the cylinder liners many times each second in diesel engines, together with the associated local elastic deformations on the piston rings themselves, combine with the influence of pressure upon lubricant viscosity to enhance the minimum oil film thickness in the piston seal by elastohydrodynamic action.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650014 ◽  
Author(s):  
Kun Zhou ◽  
Qingbing Dong

This paper develops a three-dimensional (3D) model for a heterogeneous half-space with inclusions distributed periodically beneath its surface subject to elastohydrodynamic lubrication (EHL) line-contact applied by a cylindrical loading body. The model takes into account the interactions between the loading body, the fluid lubricant and the heterogeneous half-space. In the absence of subsurface inclusions, the surface contact pressure distribution, the half-space surface deformation and the lubricant film thickness profile are obtained through solving a unified Reynolds equation system. The inclusions are homogenized according to Eshelby’s equivalent inclusion method (EIM) with unknown eigenstrains to be determined. The disturbed half-space surface deformations induced by the subsurface inclusions or eigenstrains are iteratively introduced into the lubricant film thickness until the surface deformation finally converges. Both time-independent smooth surface contact and time-dependent rough surface contact are considered for the lubricated contact problem.


2000 ◽  
Vol 123 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Jiaxin Zhao ◽  
Farshid Sadeghi ◽  
Michael H. Hoeprich

In this paper a model is presented to investigate the start up condition in elastohydrodynamic lubrication. During start up the lubrication condition falls into the mixed lubrication regime. The transition from solid contact to lubricated contact is of importance when investigating the start up process and its effects on bearing performance. The model presented uses the multigrid multilevel method to solve the lubricated region of the contact and a minimization of complementary energy approach to solve the solid contact region. The FFT method is incorporated to speed up the film thickness calculation. An iteration scheme between the lubrication and the solid contact problems is used to achieve the solution of the mixed lubrication contact problem. The results of start up with smooth surfaces are provided for the case when speed increases from zero to desired speed in one step and the case when speed is linearly increased to desired speed. The details of the transition from full solid contact to full lubricated contact in EHL start up are presented. The change of pressure and film thickness as well as contact forces and contact areas are discussed.


Sign in / Sign up

Export Citation Format

Share Document