Wave propagation in transversely isotropic elastic media - I. Homogeneous plane waves

In relation to transversely isotropic media, this paper presents a detailed study of those aspects of the propagation of homogeneous plane elastic waves which are essential to a basic understanding of the behaviour of surface waves. It is first shown how the ordering of the speeds of plane waves provides, directly and simply, a means of classifying the chosen materials, with the class label specifying the broad structure of the slowness surface and the location of its singular points. An examination of the shape of the outer sheet of the slowness surface follows, providing inter alia a complete account of the incidence of the various types of transonic states. The discussion turns next to exceptional waves, that is homogeneous plane waves which leave free of traction some family of parallel planes. The subset of the plane waves possessing this property is determined, after which the subset of the exceptional waves serving as limiting waves for an exceptional transonic state is picked out. Exceptional transonic states occur only when the axis of material symmetry lies either in the reference plane or at right angles to the reference vector and these orientations of the axis are referred to as α and β configurations respectively. The exceptional states are arranged in a threefold classification, one class consisting of a continuous set of α configurations and the others discrete β configurations. The paper ends with calculations of the limiting speed of the transonic state for the totality of α and β configurations.

Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 919-933 ◽  
Author(s):  
Michael A. Schoenberg ◽  
Maarten V. de Hoop

To decouple qP and qSV sheets of the slowness surface of a transversely isotropic (TI) medium, a sequence of rational approximations to the solution of the dispersion relation of a TI medium is introduced. Originally conceived to allow isotropic P-wave processing schemes to be generalized to encompass the case of qP-waves in transverse isotropy, the sequence of approximations was found to be applicable to qSV-wave processing as well, although a higher order of approximation is necessary for qSV-waves than for qP-waves to yield the same accuracy. The zeroth‐order approximation, about which all other approximations are taken, is that of elliptical TI, which contains the correct values of slowness and its derivative along and perpendicular to the medium’s axis of symmetry. Successive orders of approximation yield the correct values of successive orders of derivatives in these directions, thereby forcing the approximation into increasingly better fit at the intervening oblique angles. Practically, the first‐order approximation for qP-wave propagation and the second‐order approximation for qSV-wave propagation yield sufficiently accurate results for the typical transverse isotropy found in geological settings. After only slight modification to existing programs, the rational approximation allows for ray tracing, (f-k) domain migration, and split‐step Fourier migration in TI media—with little more difficulty than that encountered presently with such algorithms in isotropic media.


Sign in / Sign up

Export Citation Format

Share Document