Approximate dispersion relations for qP-qSV-waves in transversely isotropic media

Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 919-933 ◽  
Author(s):  
Michael A. Schoenberg ◽  
Maarten V. de Hoop

To decouple qP and qSV sheets of the slowness surface of a transversely isotropic (TI) medium, a sequence of rational approximations to the solution of the dispersion relation of a TI medium is introduced. Originally conceived to allow isotropic P-wave processing schemes to be generalized to encompass the case of qP-waves in transverse isotropy, the sequence of approximations was found to be applicable to qSV-wave processing as well, although a higher order of approximation is necessary for qSV-waves than for qP-waves to yield the same accuracy. The zeroth‐order approximation, about which all other approximations are taken, is that of elliptical TI, which contains the correct values of slowness and its derivative along and perpendicular to the medium’s axis of symmetry. Successive orders of approximation yield the correct values of successive orders of derivatives in these directions, thereby forcing the approximation into increasingly better fit at the intervening oblique angles. Practically, the first‐order approximation for qP-wave propagation and the second‐order approximation for qSV-wave propagation yield sufficiently accurate results for the typical transverse isotropy found in geological settings. After only slight modification to existing programs, the rational approximation allows for ray tracing, (f-k) domain migration, and split‐step Fourier migration in TI media—with little more difficulty than that encountered presently with such algorithms in isotropic media.

Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 467-483 ◽  
Author(s):  
Ilya Tsvankin

Progress in seismic inversion and processing in anisotropic media depends on our ability to relate different seismic signatures to the anisotropic parameters. While the conventional notation (stiffness coefficients) is suitable for forward modeling, it is inconvenient in developing analytic insight into the influence of anisotropy on wave propagation. Here, a consistent description of P‐wave signatures in transversely isotropic (TI) media with arbitrary strength of the anisotropy is given in terms of Thomsen notation. The influence of transverse isotropy on P‐wave propagation is shown to be practically independent of the vertical S‐wave velocity [Formula: see text], even in models with strong velocity variations. Therefore, the contribution of transverse isotropy to P‐wave kinematic and dynamic signatures is controlled by just two anisotropic parameters, ε and δ, with the vertical velocity [Formula: see text] being a scaling coefficient in homogeneous models. The distortions of reflection moveouts and amplitudes are not necessarily correlated with the magnitude of velocity anisotropy. The influence of transverse isotropy on P‐wave normal‐moveout (NMO) velocity in a horizontally layered medium, on small‐angle reflection coefficient, and on point‐force radiation in the symmetry direction is entirely determined by the parameter δ. Another group of signatures of interest in reflection seisimology—the dip‐dependence of NMO velocity, magnitude of nonhyperbolic moveout, time‐migration impulse response, and the radiation pattern near vertical—is dependent on both anisotropic parameters (ε and δ) and is primarily governed by the difference between ε and δ. Since P‐wave signatures are so sensitive to the value of ε − δ, application of the elliptical‐anisotropy approximation (ε = δ) in P‐wave processing may lead to significant errors. Many analytic expressions given in the paper remain valid in transversely isotropic media with a tilted symmetry axis. Moreover, the equation for NMO velocity from dipping reflectors, as well as the nonhyperbolic moveout equation, can be used in symmetry planes of any anisotropic media (e.g., orthorhombic).


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1855-1866 ◽  
Author(s):  
Jack K. Cohen

In their studies of transversely isotropic media with a vertical symmetry axis (VTI media), Alkhalifah and Tsvankin observed that, to a high numerical accuracy, the normal moveout (NMO) velocity for dipping reflectors as a function of ray parameter p depends mainly on just two parameters, each of which can be determined from surface P‐wave observations. They substantiated this result by using the weak‐anisotropy approximation and exploited it to develop a time‐domain processing sequence that takes into account vertical transverse isotropy. In this study, the two‐parameter Alkhalifah‐Tsvankin result was further examined analytically. It was found that although there is (as these authors already observed) some dependence on the remaining parameters of the problem, this dependence is weak, especially in the practically important regimes of weak to moderately strong transverse isotropy and small ray parameter. In each of these regimes, an analytic solution is derived for the anisotropy parameter η required for time‐domain P‐wave imaging in VTI media. In the case of elliptical anisotropy (η = 0), NMO velocity expressed through p is fully controlled just by the zero‐dip NMO velocity—one of the Alkhalifah‐ Tsvankin parameters. The two‐parameter representation of NMO velocity also was shown to be exact in another limit—that of the zero shear‐wave vertical velociy. The analytic results derived here are based on new representations for both the P‐wave phase velocity and normal moveout velocity in terms of the ray parameter, with explicit expressions given for the cases of vanishing onaxis shear speed, weak to moderate transverse isotropy, and small to moderate ray parameter. Using these formulas, I have rederived and, in some cases, extended in a uniform manner various results of Tsvankin, Alkhalifah, and others. Examples include second‐order expansions in the anisotropy parameters for both the P‐wave phase‐velocity function and NMO‐velocity function, as well as expansions in powers of the ray parameter for both of these functions. I have checked these expansions against the corresponding exact functions for several choices of the anisotropy parameters.


Geophysics ◽  
1987 ◽  
Vol 52 (4) ◽  
pp. 564-567 ◽  
Author(s):  
J. Wright

Studies have shown that elastic properties of materials such as shale and chalk are anisotropic. With the increasing emphasis on extraction of lithology and fluid content from changes in reflection amplitude with shot‐to‐group offset, one needs to know the effects of anisotropy on reflectivity. Since anisotropy means that velocity depends upon the direction of propagation, this angular dependence of velocity is expected to influence reflectivity changes with offset. These effects might be particularly evident in deltaic sand‐shale sequences since measurements have shown that the P-wave velocity of shales in the horizontal direction can be 20 percent higher than the vertical P-wave velocity. To investigate this behavior, a computer program was written to find the P- and S-wave reflectivities at an interface between two transversely isotropic media with the axis of symmetry perpendicular to the interface. Models for shale‐chalk and shale‐sand P-wave reflectivities were analyzed.


Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1654-1664 ◽  
Author(s):  
N. C. Banik

An interesting physical meaning is presented for the anisotropy parameter δ, previously introduced by Thomsen to describe weak anisotropy in transversely isotropic media. Roughly, δ is the difference between the P-wave and SV-wave anisotropies of the medium. The observed systematic depth errors in the North Sea are reexamined in view of the new interpretation of the moveout velocity through δ. The changes in δ at an interface adequately describe the effects of transverse isotropy on the P-wave reflection amplitude, The reflection coefficient expression is linearized in terms of changes in elastic parameters. The linearized expression clearly shows that it is the variation of δ at the interface that gives the anisotropic effects at small incidence angles. Thus, δ effectively describes both the moveout velocity and the reflection amplitude variation, two very important pieces of information in reflection seismic prospecting, in the presence of transverse isotropy.


2006 ◽  
Vol 156 (1-2) ◽  
pp. 21-40 ◽  
Author(s):  
Marie Calvet ◽  
Sébastien Chevrot ◽  
Annie Souriau

2006 ◽  
Vol 156 (1-2) ◽  
pp. 12-20 ◽  
Author(s):  
Marie Calvet ◽  
Sébastien Chevrot ◽  
Annie Souriau

Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. C1-C7 ◽  
Author(s):  
Yevhen Kovalyshen ◽  
Joel Sarout ◽  
Jeremie Dautriat

We have developed a new numerical algorithm for inversion of ultrasonic data in transversely isotropic media. This algorithm is able to determine from the measured P-wave velocities the orientation of the symmetry axis of a rock sample and the Thomsen’s parameters, only assuming transverse isotropy. The inversion of ultrasonic data acquired on natural and potentially heterogeneous shale samples produced reasonable results. In addition, the algorithm was successfully tested on ultrasonic data acquired on synthetic samples with predefined orientations of the symmetry axis. An additional outcome of the algorithm is a simple approximation of Thomsen’s formulation, which can be effectively used for interpretation of seismic data in transversely isotropic media.


Author(s):  
Yabing Zhang ◽  
Yang Liu ◽  
Shigang Xu

Abstract Under the conditions of acoustic approximation and isotropic attenuation, we derive the pseudo- and pure-viscoacoustic wave equations from the complex constitutive equation and the decoupled P-wave dispersion relation, respectively. Based on the equations, we investigate the viscoacoustic wave propagation in vertical transversely isotropic media. The favourable advantage of these formulas is that the phase dispersion and the amplitude dissipation terms are inherently separated. As a result, we can conveniently perform the decoupled viscoacoustic wavefield simulations by choosing different coefficients. In the computational process, a generalised pseudo-spectral method and a low-rank decomposition scheme are adopted to calculate the wavenumber-domain and mixed-domain propagators, respectively. Because low-rank decomposition plays an important role in the simulated procedure, we evaluate the approximation accuracy for different operators using a linear velocity model. To demonstrate the effectiveness and the accuracy of our method, several numerical examples are carried out based on the new pseudo- and pure-viscoacoustic wave equations. Both equations can effectively describe the viscoacoustic wave propagation characteristics in vertical transversely isotropic media. Unlike the pseudo-viscoacoustic wave equation, the pure-viscoacoustic wave equation can produce stable viscoacoustic wavefields without any SV-wave artefacts.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. C175-C186 ◽  
Author(s):  
Mohammad Mahdi Abedi

Orthorhombic anisotropy is a modern standard for 3D seismic studies in complex geologic settings. Several seismic data processing methods and wave propagation modeling algorithms in orthorhombic media rely on phase-velocity, group-velocity, and traveltime approximations. The algebraic simplicity of an approximate equation is an important factor in these media because the governing equations are more complicated than transversely isotropic media. To approximate the P-wave kinematics in acoustic orthorhombic media, we have developed a new 3D general functional equation that has a simple rational form. Using the general form, we adopt two versions of rational approximations for the phase velocity, group velocity, and traveltime. The first version uses a simpler functional form and parameter definition within the orthorhombic symmetry planes. The second version is more accurate, using one parameter that is defined out of the symmetry planes. For the phase velocity, we obtain another approximation that is no longer rational but is still algebraically simple, exact for 3D transversely isotropic media, and it is exact within the symmetry planes of orthorhombic media. We find superior accuracy in our approximations compared with previous ones, using numerical studies on multiple moderately anisotropic orthorhombic models. We investigate the effect of the negative anellipticity parameters on the accuracy and find that, in models in which the error of the existing most accurate approximations exceeds 2%, the error of the new approximations remains below 0.2%. The adopted approximations are algebraically simpler and stably more accurate than existing approximations; therefore, they may be considered as attractive alternatives for the existing approximations in many practical applications. We extend the applicability of our approximations by using them to obtain the equations of group direction as a function of phase direction and vice versa, which are useful in wave propagation modeling methods.


Geophysics ◽  
1996 ◽  
Vol 61 (3) ◽  
pp. 835-845 ◽  
Author(s):  
John Anderson ◽  
Tariq Alkhalifah ◽  
Ilya Tsvankin

The main advantage of Fowler’s dip‐moveout (DMO) method is the ability to perform velocity analysis along with the DMO removal. This feature of Fowler DMO becomes even more attractive in anisotropic media, where imaging methods are hampered by the difficulty in reconstructing the velocity field from surface data. We have devised a Fowler‐type DMO algorithm for transversely isotropic media using the analytic expression for normal‐moveout velocity. The parameter‐estimation procedure is based on the results of Alkhalifah and Tsvankin showing that in transversely isotropic media with a vertical axis of symmetry (VTI) the P‐wave normal‐moveout (NMO) velocity as a function of ray parameter can be described fully by just two coefficients: the zero‐dip NMO velocity [Formula: see text] and the anisotropic parameter η (η reduces to the difference between Thomsen parameters ε and δ in the limit of weak anisotropy). In this extension of Fowler DMO, resampling in the frequency‐wavenumber domain makes it possible to obtain the values of [Formula: see text] and η by inspecting zero‐offset (stacked) panels for different pairs of the two parameters. Since most of the computing time is spent on generating constant‐velocity stacks, the added computational effort caused by the presence of anisotropy is relatively minor. Synthetic and field‐data examples demonstrate that the isotropic Fowler DMO technique fails to generate an accurate zero‐offset section and to obtain the zero‐dip NMO velocity for nonelliptical VTI models. In contrast, this anisotropic algorithm allows one to find the values of the parameters [Formula: see text] and η (sufficient to perform time migration as well) and to correct for the influence of transverse isotropy in the DMO processing. When combined with poststack F-K Stolt migration, this method represents a complete inversion‐processing sequence capable of recovering the effective parameters of transversely isotropic media and producing migrated images for the best‐fit homogeneous anisotropic model.


Sign in / Sign up

Export Citation Format

Share Document