scholarly journals Nonlinear stability of rotating pseudo-rigid bodies

A rigorous nonlinear stability analysis of rotating homogeneous elastic bodies is presented, which exploits the hamiltonian structure and symmetries inherent to homogeneous elasticity by means of the energy-momentum method. It is shown that stability of a relative equilibrium is implied by the definiteness of the second variation of a modified hamiltonian restricted to an appropriate subspace. The analysis makes crucial use of a special parametrization of the constrained space of admissible variations, which results in a nearly diagonal second variation. The stability conditions obtained by this method include the conditions for stability of the equilibrium configuration as a rigid body and satisfaction of the Baker-Ericksen inequalities. As an application of our results, we obtain complete, explicit stability conditions for a particular form of relative equilibria for three classes of materials: for two of these, Ciarlet-Geymonat and St Venant-Kirchhoff materials, these equilibria are always stable; for the third, a compressible Mooney-Rivlin material, both stable and unstable equilibria exist.

2020 ◽  
Vol 34 (32) ◽  
pp. 2050365
Author(s):  
Siyuan Chen ◽  
Changxi Ma ◽  
Jinchou Gong

At present, drivers can rely on road communication technology to obtain the current traffic status information, and the development of intelligent transportation makes self-driving possible. In this paper, considering the mixed traffic flow with self-driving vehicles and the taillight effect, a new macro-two-lane lattice model is established. Combined with the concept of critical density, the judgment conditions for vehicles to take braking measures are given. Based on the linear analysis, the stability conditions of the new model are obtained, and the mKdV equation describing the evolution mechanism of density waves is derived through the nonlinear stability analysis. Finally, with the help of numerical simulation, the phase diagram and kink–anti-kink waveform of neutral stability conditions are obtained, and the effects of different parameters of the model on traffic flow stability are analyzed. The results show that the braking probability, the proportion of self-driving vehicles and the critical density have significant effects on the traffic flow stability. Considering taillight effect and increasing the mixing ratio of self-driving vehicles can effectively enhance the stability of traffic flow, but a larger critical density will destroy the stability of traffic flow.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Ammar Jafaripournimchahi ◽  
Lu Sun ◽  
Wusheng Hu

We developed a new car-following model to investigate the effects of driver anticipation and driver memory on traffic flow. The changes of headway, relative velocity, and driver memory to the vehicle in front are introduced as factors of driver’s anticipation behavior. Linear and nonlinear stability analyses are both applied to study the linear and nonlinear stability conditions of the new model. Through nonlinear analysis a modified Korteweg-de Vries (mKdV) equation was constructed to describe traffic flow near the traffic near the critical point. Numerical simulation shows that the stability of traffic flow can be effectively enhanced by the effect of driver anticipation and memory. The starting and breaking process of vehicles passing through the signalized intersection considering anticipation and driver memory are presented. All results demonstrate that the AMD model exhibit a greater stability as compared to existing car-following models.


2008 ◽  
Vol 22 (15) ◽  
pp. 1447-1454
Author(s):  
NIKOS KALOGEROPOULOS

We perform a calculation of the first and second order infinitesimal variations, with respect to energy, of the Boltzmann entropy of constant energy hypersurfaces of a system with a finite number of degrees of freedom. We comment on the stability interpretation of the second variation in this framework.


2015 ◽  
Vol 725-726 ◽  
pp. 854-862 ◽  
Author(s):  
Vladimir Lalin ◽  
Daria Kushova

This article is about the nonlinear problems of the theory of elastic Cosserat – Timoshenko’s rods in the material (Lagrangian) description with energy conjugated vectors of forces, moments and strains. The variational formulations of static problems was given. The differential equations of the plane stability problems were obtained from the second variation of the Lagrangian functional. The exact solutions of the stability problems for basic types of the end fixities of the rod were obtained for the Timoshenko’s rod (taking into account only bending and shear stiffness). It appears that classical well-known equilibrium stability functional and stability equations for the Timoshenko’s rod are incorrect. Also well-known Engesser formula (with bending and shear stiffness) is incorrect. The numerical solution of the stability problems for hinged Timoshenko’s rod with rigid support was obtained. Also, simplified formula for this problem was derived using asymptotic analysis.


1977 ◽  
Vol 17 (01) ◽  
pp. 79-91 ◽  
Author(s):  
D.W. Peaceman

Abstract The usual linearized stability analysis of the finite-difference solution for two-phase flow in porous media is not delicate enough to distinguish porous media is not delicate enough to distinguish between the stability of equations using semi-implicit mobility and those using completely implicit mobility. A nonlinear stability analysis is developed and applied to finite-difference equations using an upstream mobility that is explicit, completely implicit, or semi-implicit. The nonlinear analysis yields a sufficient (though not necessary) condition for stability. The results for explicit and completely implicit mobilities agree with those obtained by the standard linearized analysis; in particular, use of completely implicit mobility particular, use of completely implicit mobility results in unconditional stability. For semi-implicit mobility, the analysis shows a mild restriction that generally will not be violated in practical reservoir simulations. Some numerical results that support the theoretical conclusions are presented. Introduction Early finite-difference, Multiphase reservoir simulators using explicit mobility were found to require exceedingly small time steps to solve certain types of problems, particularly coning and gas percolation. Both these problems are characterized percolation. Both these problems are characterized by regions of high flow velocity. Coats developed an ad hoc technique for dealing with gas percolation, but a more general and highly successful approach for dealing with high-velocity problems has been the use of implicit mobility. Blair and Weinaug developed a simulator using completely implicit mobility that greatly relaxed the time-step restriction. Their simulator involved iterative solution of nonlinear difference equations, which considerably increased the computational work per time step. Three more recent papers introduced the use of semi-implicit mobility, which proved to be greatly superior to the fully implicit method with respect to computational effort, ease of use, and maximum permissible time-step size. As a result, semi-implicit mobility has achieved wide use throughout the industry. However, this success has been pragmatic, with little or no theoretical work to justify its use. In this paper, we attempt to place the use of semi-implicit mobility on a sounder theoretical foundation by examining the stability of semi-implicit difference equations. The usual linearized stability analysis is not delicate enough to distinguish between the semi-implicit and completely implicit difference equation. A nonlinear stability analysis is developed that permits the detection of some differences between the stability of difference equations using implicit mobility and those using semi-implicit mobility. DIFFERENTIAL EQUATIONS The ideas to be developed may be adequately presented using the following simplified system: presented using the following simplified system: horizontal, one-dimensional, two-phase, incompressible flow in homogeneous porous media, with zero capillary pressure. A variable cross-section is included so that a variable flow velocity may be considered. The basic differential equations are (1) (2) The total volumetric flow rate is given by (3) Addition of Eqs. 1 and 2 yields =O SPEJ P. 79


2005 ◽  
Vol 16 (09) ◽  
pp. 1017-1031 ◽  
Author(s):  
QUN HE ◽  
YI-BING SHEN

By simplifying the first and the second variation formulas of the energy functional and generalizing the Weitzenböck formula, we study the stability and the rigidity of harmonic maps between Finsler manifolds. It is proved that any nondegenerate harmonic map from a compact Einstein Riemannian manifold with nonnegative scalar curvature to a Berwald manifold with nonpositive flag curvature is totally geodesic and there is no nondegenerate stable harmonic map from a Riemannian unit sphere Sn (n > 2) to any Finsler manifold.


2013 ◽  
Vol 361-363 ◽  
pp. 1251-1254
Author(s):  
Xiao Mei Dong

Shell element was used to simulate thin-walled piers. Mander constitutive model was adopted for analysis about the material nonlinearity. By finite displacement theory the geometric nonlinearity effect was reckoned in stability analysis based on Updated Lagrangian formulation. Nonlinear stability analysis during different construction stages indicates that the stability of pier in cantilever stage is weakest. Considered the dual non-linearity, the stability coefficient descends distinctly.


2016 ◽  
Vol 40 (3) ◽  
pp. 265-287 ◽  
Author(s):  
Masoumeh Esfandiari ◽  
Nariman Sepehri

Quantitative feedback theory (QFT) is a well-established technique to design robust and linear controllers. However, the important open problem of extending the small signal stability to nonlinear stability verification has remained an ongoing research in the design of QFT controllers. In this paper, we show that Takagi–Sugeno (T–S) fuzzy modeling approach and its stability theory provide a new opportunity to study the nonlinear stability of QFT controllers in fluid power systems. To validate the approach, two case studies are provided first. The first case study establishes the reliability of the approach by confirming the results for a hydraulic system of which nonlinear stability has already been proven. The second case study establishes that using the proposed approach, we can further study and extend the stability region of previously developed hydraulic controllers to include parametric uncertainty. Followed by the successful validation of the effectiveness of our approach through these two case studies, the stability of a QFT position controller, for which the nonlinear stability was never proven, is investigated.


Sign in / Sign up

Export Citation Format

Share Document