The instability theory of drumlin formation applied to Newtonian viscous ice of finite depth

Author(s):  
A. C. Fowler

The Hindmarsh instability theory of drumlin formation is applied to the study of interfacial instabilities, which may arise when ice flows viscously over deformable sediments. Here, the analytic form of this theory is extended to the case where the ice is Newtonian viscous and of finite depth, and where the basal till can be both sheared by the ice and squeezed by basal effective pressure gradients: previous authors assumed infinitely deep ice, based on the assumption that the developing waveforms had wavelength much less than ice depth. The previous infinite depth theory only allowed transverse instabilities to occur, and these have been associated with the formation of ribbed moraine; one of the purposes of extending the analysis to finite depth is to see whether three-dimensional instabilities, which might be associated with the formation of drumlins or mega-scale glacial lineations, can occur: we find that they do not. A second purpose is to calculate under what circumstances the infinite depth theory provides accurate prediction of bedform development in ice of finite depth d i . We find that this is the case if the waveforms have a wavelength less than approximately 1.2 d i . Finally, the finite depth theory allows us to compute, for the first time, the response of the ice surface to the developing unstable bedforms. We find that this response is rapid, and we give explicit recipes for the surface perturbation transfer functions in terms of the perturbations to the basal stress and the basal topography.

Author(s):  
A. C. Fowler ◽  
M. Chapwanya

We present a theory for the coupled flow of ice, subglacial water and subglacial sediment, which is designed to represent the processes which occur at the bed of an ice sheet. The ice is assumed to flow as a Newtonian viscous fluid, the water can flow between the till and the ice as a thin film, which may thicken to form streams or cavities, and the till is assumed to be transported, either through shearing by the ice, squeezing by pressure gradients in the till, or by fluvial sediment transport processes in streams or cavities. In previous studies, it was shown that the dependence of ice sliding velocity on effective pressure provided a mechanism for the generation of bedforms resembling ribbed moraine, while the dependence of fluvial sediment transport on water film depth provides a mechanism for the generation of bedforms resembling mega-scale glacial lineations. Here, we combine these two processes in a single model, and show that, depending largely on the granulometry of the till, instability can occur in a range of types which range from ribbed moraine through three-dimensional drumlins to mega-scale glacial lineations.


2021 ◽  
Author(s):  
Scott J. Peltier ◽  
Brian E. Rice ◽  
Ethan Johnson ◽  
Venkateswaran Narayanaswamy ◽  
Marvin E. Sellers

2003 ◽  
Vol 59 (1) ◽  
pp. 114-121 ◽  
Author(s):  
Martin J. Siegert ◽  
Richard C. A. Hindmarsh ◽  
Gordon S. Hamilton

AbstractInternal isochronous ice sheet layers, recorded by airborne ice-penetrating radar, were measured along an ice flowline across a large (>1 km high) subglacial hill in the foreground of the Transantarctic Mountains. The layers, dated through an existing stratigraphic link with the Vostok ice core, converge with the ice surface as ice flows over the hill without noticeable change to their separation with each other or the ice base. A two-dimensional ice flow model that calculates isochrons and particle flowpaths and accounts for ice flow over the hill under steady-state conditions requires net ablation (via sublimation) over the stoss face for the predicted isochrons to match the measured internal layers. Satellite remote sensing data show no sign of exposed ancient ice at this site, however. Given the lack of exposed glacial ice, surface balance conditions must have changed recently from the net ablation that is predicted at this site for the last 85,000 years to accumulation.


2000 ◽  
Author(s):  
Chris L. Mullen ◽  
Prabin R. Tuladhar

Abstract Discussion of a Performance - Based Engineering evaluation procedure for an existing interstate highway bridge in north Mississippi. The bridge is in a highly trafficked location near the Memphis Metropolitan area and is reflective of modern design practices in Mississippi. Results are presented of nonlinear damage response and displacement ductility performance of the reinforced concrete bents and their foundations predicted using static finite element (FE) computations. The model considers the composite action of the concrete and the reinforcing steel materials under axial force, shear, torsion and flexure. The performance-based evaluation includes three-dimensional computational simulations of the nonlinear bridge system, including substructures and superstructure. The response spectrum dynamic analysis method will also be carried out on the linear elastic three-dimensional model to predict the linear elastic behavior. Field vibration measurements, including ambient and hammer-impact, were performed to calibrate the models. The computed transfer functions are currently being evaluated to correlate vibration measurements and the Finite element models.


1979 ◽  
Vol 95 (1) ◽  
pp. 141-157 ◽  
Author(s):  
C. Macaskill

The linearized problem of water-wave reflexion by a thin barrier of arbitrary permeability is considered with the restriction that the flow be two-dimensional. The formulation includes the special case of transmission through one or more gaps in an otherwise impermeable barrier. The general problem is reduced to a set of integral equations using standard techniques. These equations are then solved using a special decomposition of the finite depth source potential which allows accurate solutions to be obtained economically. A representative range of solutions is obtained numerically for both finite and infinite depth problems.


Sign in / Sign up

Export Citation Format

Share Document