scholarly journals Vortex-type elastic structured media and dynamic shielding

Author(s):  
M. Brun ◽  
I. S. Jones ◽  
A. B. Movchan

The paper presents an approach to modelling a novel elastic metamaterial structure that possesses non-trivial dispersion features. A system of spinners has been embedded into a two-dimensional periodic lattice system. The analysis of the motion of the spinners is used to derive an expression for a ‘chiral term’ in the equations describing the dynamics of the lattice. Dispersion of elastic waves is shown to possess innovative filtering and polarization properties induced by the vortex-type nature of the structured media. The related effective behaviour in a continuous medium is implemented to build a shielding cloak around an obstacle. Analytical work is accompanied by numerical illustrations.

2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Yongquan Liu ◽  
Xiaohui Shen ◽  
Xianyue Su ◽  
C. T. Sun

An elastic metamaterial with a low-frequency passband is proposed by imitating a lattice system with linear on-site potential. It is shown that waves can only propagate in the tunable passband. Then, two kinds of elastic metamaterials with double passbands are designed. Great wave attenuation performance can be obtained at frequencies between the two passbands for locally resonant type metamaterials, and at both low and high frequencies for the diatomic type metamaterials. Finally, the strategy to design two-dimensional (2D) metamaterials is demonstrated. The present method can be used to design new types of small-size waveguides, filters, and other devices for elastic waves.


2019 ◽  
Vol 87 (1) ◽  
Author(s):  
Xiao-Dong Yang ◽  
Qing-Dian Cui ◽  
Wei Zhang

Abstract Phononic crystals composed of delicately designed periodic units are used to control spatial and spectral properties of acoustic or elastic waves. The ability to manipulate transmitting waves in a real-time dynamic manner provides a new concept in programable phononic crystals and metamaterials. In this study, the mechanical waves and bandgaps in a two-dimensional spring-mass array loaded by high-frequency parametric excitation have been investigated by both analytical and numerical methods. It is found that the high-frequency parametric excitation provides an equivalent additional stiffness which leads to low-frequency bandgaps. By tuning the parametric excitation, the versatility of such a dynamic modulating technique has been presented. The waveguide structure has also been designed and studied by non-uniformly distributed parametric excitations.


Geophysics ◽  
1972 ◽  
Vol 37 (3) ◽  
pp. 445-455 ◽  
Author(s):  
C. N. G. Dampney ◽  
B. B. Mohanty ◽  
G. F. West

Simple electronic circuitry and axially polarized ceramic transducers are employed to generate and detect elastic waves in a two‐dimensional analog model. The absence of reverberation and the basic simplicity. of construction underlie the advantages of this system. If the form of the fundamental wavelet in the model itself, as modified by the linear filtering effects of the remainder of the system, can be found, then calibration is achieved. This permits direct comparison of theoretical and experimental seismograms for a given model if its impulse response is known. A technique is developed for calibration and verified by comparing Lamb’s theoretical and experimental seismograms for elastic wave propagation over the edge of a half plate. This comparison also allows a critical examination of the basic assumptions inherent in a model seismic system.


2021 ◽  
Author(s):  
Rangyue Zhang ◽  
Guannan Shi ◽  
Hanyu Tang ◽  
Yang Liu ◽  
Yanhong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document