scholarly journals Hamiltonian structure for two-dimensional extended Green–Naghdi equations

Author(s):  
Yoshimasa Matsuno

The two-dimensional Green–Naghdi (GN) shallow-water model for surface gravity waves is extended to incorporate the arbitrary higher-order dispersive effects. This can be achieved by developing a novel asymptotic analysis applied to the basic nonlinear water wave problem. The linear dispersion relation for the extended GN system is then explored in detail. In particular, we use its characteristics to discuss the well-posedness of the linearized problem. As illustrative examples of approximate model equations, we derive a higher-order model that is accurate to the fourth power of the dispersion parameter in the case of a flat bottom topography, and address the related issues such as the linear dispersion relation, conservation laws and the pressure distribution at the fluid bottom on the basis of this model. The original Green–Naghdi (GN) model is then briefly described in the case of an uneven bottom topography. Subsequently, the extended GN system presented here is shown to have the same Hamiltonian structure as that of the original GN system. Last, we demonstrate that Zakharov's Hamiltonian formulation of surface gravity waves is equivalent to that of the extended GN system by rewriting the former system in terms of the momentum density instead of the velocity potential at the free surface.

2015 ◽  
Vol 766 ◽  
pp. 326-336 ◽  
Author(s):  
Tore Magnus A. Taklo ◽  
Karsten Trulsen ◽  
Odin Gramstad ◽  
Harald E. Krogstad ◽  
Atle Jensen

AbstractWe report laboratory experiments and numerical simulations of the Zakharov equation, designed to have sufficient resolution in space and time to measure the dispersion relation for random surface gravity waves. The experiments and simulations are carried out for a JONSWAP spectrum and Gaussian spectra of various bandwidths on deep water. It is found that the measured dispersion relation deviates from the linear dispersion relation above the spectral peak when the bandwidth is sufficiently narrow.


2017 ◽  
Vol 812 ◽  
pp. 681-697 ◽  
Author(s):  
Tore Magnus A. Taklo ◽  
Karsten Trulsen ◽  
Harald E. Krogstad ◽  
José Carlos Nieto Borge

Using a nonlinear evolution equation we examine the dependence of the dispersion of directional surface gravity waves on the Benjamin–Feir index (BFI) and crest length. A parameter for describing the deviation between the dispersion of simulated waves and the theoretical linear dispersion relation is proposed. We find that for short crests the magnitude of the deviation parameter is low while for long crests the magnitude is high and depends on the BFI. In the present paper we also consider laboratory data of directional waves from the Marine Research Institute of the Netherlands (MARIN). The MARIN data confirm the simulations for three cases of BFI and crest length.


2007 ◽  
Vol 576 ◽  
pp. 235-264 ◽  
Author(s):  
FABRICE ARDHUIN ◽  
RUDY MAGNE

A theory is presented that describes the scattering of random surface gravity waves by small-amplitude topography, with horizontal scales of the order of the wavelength, in the presence of an irrotational and almost uniform current. A perturbation expansion of the wave action to order η2 yields an evolution equation for the wave action spectrum, where η = max(h)/H is the small-scale bottom amplitude normalized by the mean water depth. Spectral wave evolution is proportional to the bottom elevation variance at the resonant wavenumbers, representing a Bragg scattering approximation. With a current, scattering results from a direct effect of the bottom topography, and an indirect effect of the bottom through the modulations of the surface current and mean surface elevation. For Froude numbers of the order of 0.6 or less, the bottom topography effects dominate. For all Froude numbers, the reflection coefficients for the wave amplitudes that are inferred from the wave action source term are asymptotically identical, as η goes to zero, to previous theoretical results for monochromatic waves propagating in one dimension over sinusoidal bars. In particular, the frequency of the most reflected wave components is shifted by the current, and wave action conservation results in amplified reflected wave energies for following currents. Application of the theory to waves over current-generated sandwaves suggests that forward scattering can be significant, resulting in a broadening of the directional wave spectrum, while back-scattering should be generally weaker.


2002 ◽  
Vol 66 (1) ◽  
Author(s):  
Jørgen H. Pihl ◽  
Chiang C. Mei ◽  
Matthew J. Hancock

Author(s):  
Didier Clamond

The velocity and other fields of steady two-dimensional surface gravity waves in irrotational motion are investigated numerically. Only symmetric waves with one crest per wavelength are considered, i.e. Stokes waves of finite amplitude, but not the highest waves, nor subharmonic and superharmonic bifurcations of Stokes waves. The numerical results are analysed, and several conjectures are made about the velocity and acceleration fields.


1984 ◽  
Vol 143 ◽  
pp. 47-67 ◽  
Author(s):  
Michael Stiassnie ◽  
Lev Shemer

The Zakharov integral equation for surface gravity waves is modified to include higher-order (quintet) interactions, for water of constant (finite or infinite) depth. This new equation is used to study some aspects of class I (4-wave) and class II (5-wave) instabilities of a Stokes wave.


2018 ◽  
Vol 844 ◽  
pp. 491-518 ◽  
Author(s):  
Didier Clamond ◽  
Denys Dutykh

This paper describes an efficient algorithm for computing steady two-dimensional surface gravity waves in irrotational motion. The algorithm complexity is $O(N\log N)$, $N$ being the number of Fourier modes. This feature allows the arbitrary precision computation of waves in arbitrary depth, i.e. it works efficiently for Stokes, cnoidal and solitary waves, even for quite large steepnesses, up to approximately 99 % of the maximum steepness for all wavelengths. In particular, the possibility to compute very long (cnoidal) waves accurately is a feature not shared by other algorithms and asymptotic expansions. The method is based on conformal mapping, the Babenko equation rewritten in a suitable way, the pseudo-spectral method and Petviashvili iterations. The efficiency of the algorithm is illustrated via some relevant numerical examples. The code is open source, so interested readers can easily check the claims, use and modify the algorithm.


Sign in / Sign up

Export Citation Format

Share Document