scholarly journals Nonlinear plane waves in saturated porous media with incompressible constituents

Author(s):  
Harold Berjamin

We consider the propagation of nonlinear plane waves in porous media within the framework of the Biot–Coussy biphasic mixture theory. The tortuosity effect is included in the model, and both constituents are assumed incompressible (Yeoh-type elastic skeleton, and saturating fluid). In this case, the linear dispersive waves governed by Biot’s theory are either of compression or shear-wave type, and nonlinear waves can be classified in a similar way. In the special case of a neo-Hookean skeleton, we derive the explicit expressions for the characteristic wave speeds, leading to the hyperbolicity condition. The sound speeds for a Yeoh skeleton are estimated using a perturbation approach. Then we arrive at the evolution equation for the amplitude of acceleration waves. In general, it is governed by a Bernoulli equation. With the present constitutive assumptions, we find that longitudinal jump amplitudes follow a nonlinear evolution, while transverse jump amplitudes evolve in an almost linearly degenerate fashion.

2020 ◽  
Vol 66 (5) ◽  
pp. 461-468
Author(s):  
Puyi Li ◽  
Lina Gao ◽  
Jinxia Liu ◽  
Zhengliang Cao ◽  
Zhiwen Cui

Author(s):  
Murilo Camargo ◽  
Pedro Cleto ◽  
Eduardo Alexandre Rodrigues ◽  
Heber Agnelo Antonel Fabbri ◽  
Osvaldo Luís Manzoli

2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


2011 ◽  
Vol 45 (19) ◽  
pp. 8352-8358 ◽  
Author(s):  
Chao Wang ◽  
Volha Lazouskaya ◽  
Mark E. Fuller ◽  
Jeffrey L. Caplan ◽  
Charles E. Schaefer ◽  
...  

2021 ◽  
Vol 33 (7) ◽  
pp. 076610
Author(s):  
Chunwei Zhang ◽  
Yun She ◽  
Yingxue Hu ◽  
Zijing Li ◽  
Weicen Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document