scholarly journals Land-use change, not climate, controls organic carbon burial in lakes

2013 ◽  
Vol 280 (1769) ◽  
pp. 20131278 ◽  
Author(s):  
N. J. Anderson ◽  
R. D. Dietz ◽  
D. R. Engstrom

Lakes are a central component of the carbon cycle, both mineralizing terrestrially derived organic matter and storing substantial amounts of organic carbon (OC) in their sediments. However, the rates and controls on OC burial by lakes remain uncertain, as do the possible effects of future global change processes. To address these issues, we derived OC burial rates in 210 Pb-dated sediment cores from 116 small Minnesota lakes that cover major climate and land-use gradients. Rates for individual lakes presently range from 7 to 127 g C m –2 yr –1 and have increased by up to a factor of 8 since Euro-American settlement (mean increase: 2.8×). Mean pre-disturbance OC burial rates were similar (14–22 g C m –2 yr –1 ) across all land-cover categories (prairie, mixed deciduous and boreal forest), indicating minimal effect of the regional temperature gradient (approx. 4°C) on background carbon burial. The relationship between modern OC burial rates and temperature was also not significant after removal of the effect of total phosphorus. Contemporary burial rates were strongly correlated with lake-water nutrients and the extent of agricultural land cover in the catchment. Increased OC burial, documented even in relatively undisturbed boreal lake ecosystems, indicates a possible role for atmospheric nitrogen deposition. Our results suggest that globally, future land-cover change, intensification of agriculture and associated nutrient loading together with atmospheric N-deposition will enhance OC sequestration by lakes.

2020 ◽  
Vol 242 ◽  
pp. 106843 ◽  
Author(s):  
Ana Carolina Ruiz-Fernández ◽  
Joan-Albert Sanchez-Cabeza ◽  
Tomasa Cuéllar-Martínez ◽  
Libia Hascibe Pérez-Bernal ◽  
Vladislav Carnero-Bravo ◽  
...  

2020 ◽  
Vol 39 (2) ◽  
pp. 159-173
Author(s):  
Rastislav Skalský ◽  
Štefan Koco ◽  
Gabriela Barančíková ◽  
Zuzana Tarasovičová ◽  
Ján Halas ◽  
...  

AbstractSoil organic carbon (SOC) in agricultural land forms part of the global terrestrial carbon cycle and it affects atmospheric carbon dioxide balance. SOC is sensitive to local agricultural management practices that sum up into regional SOC storage dynamics. Understanding regional carbon emission and sequestration trends is, therefore, important in formulating and implementing climate change adaptation and mitigation policies. In this study, the estimation of SOC stock and regional storage dynamics in the Ondavská Vrchovina region (North-Eastern Slovakia) cropland and grassland topsoil between 1970 and 2013 was performed with the RothC model and gridded spatial data on weather, initial SOC stock and historical land cover and land use changes. Initial SOC stock in the 0.3-m topsoil layer was estimated at 38.4 t ha−1 in 1970. The 2013 simulated value was 49.2 t ha−1, and the 1993–2013 simulated SOC stock values were within the measured data range. The total SOC storage in the study area, cropland and grassland areas, was 4.21 Mt in 1970 and 5.16 Mt in 2013, and this 0.95 Mt net SOC gain was attributed to inter-conversions of cropland and grassland areas between 1970 and 2013, which caused different organic carbon inputs to the soil during the simulation period with a strong effect on SOC stock temporal dynamics.


2012 ◽  
Vol 26 (3) ◽  
Author(s):  
Joshua L. Breithaupt ◽  
Joseph M. Smoak ◽  
Thomas J. Smith ◽  
Christian J. Sanders ◽  
Armando Hoare

The Holocene ◽  
2007 ◽  
Vol 17 (5) ◽  
pp. 673-681 ◽  
Author(s):  
Shi-Yong Yu ◽  
Björn E. Berglund ◽  
Per Sandgren ◽  
Steven M. Colman

1992 ◽  
Vol 6 ◽  
pp. 169-169
Author(s):  
Andrew H. Knoll

The Vendian interval (ca. 610–540 Ma) links Proterozoic and Phanerozoic worlds of sharply contrasting character. Despite decades of study, the nature of this transition remains unclear, in part because of our limited ability to correlate Vendian successions or evaluate shifts in global environments. New data on secular variations in the C and Sr isotopic compositions of Vendian carbonates (and organic matter) provide an improved stratigraphic and biogeochemical framework for understanding latest Proterozoic biological and environmental evolution.Biologically, the Vendian interval is best known for the Ediacaran radiation of macroscopic animals, but this event is set within a broader Neoproterozoic diversification of higher eukaryotes. All three principal groups of multicellular algae radiated well before the beginning of the Vendian, as did a host of unicellular protists. In particular, successions deposited immediately after the Varanger Ice Age (ca. 610–590 Ma) are characterized by a high diversity of large and morphologically complex acritarchs; most of these forms disappeared after the first appearance of Ediacara-grade metazoans but before the eponymous fauna preserved in South Australia.Stratigraphic ordering of the earliest faunas is made possible by chemostratigraphy. Contrary to some published expectations, the morphologically complex petalonemids and skeletalized cloudinids of the lower Nama Group, Namibia, appear to predate, perhaps significantly, the classic faunas of South Australia, eastern Siberia, and elsewhere. Zircon ages for tuffs promise an absolute chronology for biological and biogeochemical events. The presence in pre-Cambrian rocks of Cloudina, calcareous algae and (?)siliceous discs comparable to chrysophyte scales demonstrates that eukaryotic calcite, aragonite, and silica biomineralization all predate the beginning of the Cambrian; however, sedimentological and petrographic features of carbonates and cherts suggest that skeletons first emerged as globally significant components of the carbon and silica cycles with the basal Cambrian radiation.Vendian evolution must also be evaluated within a broader context of environmental change. The Sr and C isotopic data that enhance stratigraphic correlation also record patterns of hydrothermal emission and organic carbon burial that must have affected pO2. Independent models by Derry and others and Knoll and Walker suggest that latest Proterozoic reductions in the hydrothermal flux of reduced materials into the oceans coupled with high burial rates of organic carbon resulted in a significant increase in global oxygen levels immediately prior to the great Ediacaran radiation.Many questions about Vendian evolution remain unresolved. Some will surely require fresh insights into the development and functional morphology of early metazoans, but it is becoming increasingly clear that a satisfactory accounting of Ediacaran animal diversification will not be achieved without a better understanding of the stratigraphic, environmental, and biological context in which it occurred.


Sign in / Sign up

Export Citation Format

Share Document