scholarly journals Honeybees ( Apis mellifera ) learn to discriminate the smell of organic compounds from their respective deuterated isotopomers

2014 ◽  
Vol 281 (1778) ◽  
pp. 20133089 ◽  
Author(s):  
Wulfila Gronenberg ◽  
Ajay Raikhelkar ◽  
Eric Abshire ◽  
Jennifer Stevens ◽  
Eric Epstein ◽  
...  

The understanding of physiological and molecular processes underlying the sense of smell has made considerable progress during the past three decades, revealing the cascade of molecular steps that lead to the activation of olfactory receptor (OR) neurons. However, the mode of primary interaction of odorant molecules with the OR proteins within the sensory cells is still enigmatic. Two different concepts try to explain these interactions: the ‘odotope hypothesis’ suggests that OR proteins recognize structural aspects of the odorant molecule, whereas the ‘vibration hypothesis’ proposes that intra-molecular vibrations are the basis for the recognition of the odorant by the receptor protein. The vibration hypothesis predicts that OR proteins should be able to discriminate compounds containing deuterium from their common counterparts which contain hydrogen instead of deuterium. This study tests this prediction in honeybees ( Apis mellifera ) using the proboscis extension reflex learning in a differential conditioning paradigm. Rewarding one odour (e.g. a deuterated compound) with sucrose and not rewarding the respective analogue (e.g. hydrogen-based odorant) shows that honeybees readily learn to discriminate hydrogen-based odorants from their deuterated counterparts and supports the idea that intra-molecular vibrations may contribute to odour discrimination.

2014 ◽  
Author(s):  
Eamonn B Mallon ◽  
Akram Alghamdi ◽  
Robert T.K. Holdbrook ◽  
Ezio Rosato

Psychoneuroimmunology studies the increasing number of connections between neurobiology, immunology and behaviour. We establish Drosophila melanogaster as a tractable model in this field by demonstrating the effects of the immune response on two fundamental behaviours: sleep and memory ability. We used the Geneswitch system to upregulate peptidoglycan receptor protein (PGRP) expression, thereby stimulating the immune system in the absence of infection. Geneswitch was activated by feeding the steroid RU486, to the flies. We used an aversive classical conditioning paradigm to quantify memory and measures of activity to infer sleep. Immune stimulated flies exhibited reduced levels of sleep, which could not be explained by a generalised increase in waking activity. The effects on sleep were more pronounced for day compared to night sleep. Immune stimulated flies also showed a reduction in memory abilities. These results establish Drosophila as a model for immune-neural interactions and suggest a possible role for sleep in the interplay between the immune response and memory.


2018 ◽  
Author(s):  
Meenakshi Vijaykumar ◽  
Sandhya Mogily ◽  
Aparna Dutta-Gupta ◽  
Joby Joseph

AbstractCapacity and condition under which lateral transfer of olfactory memory is possible in insects are still debated. Here we present evidence consistent with lack of ability to transfer olfactory associative memory in two species of honeybees, Apis mellifera and Apis dorsata in a PER associative conditioning paradigm where the untrained antenna is blocked by an insulating coat. We show that the olfactory system on each side of the bee can learn and retrieve independently and the retrieval using the antenna on the side contralateral to the trained one is not affected by the training. Recreating the paradigm in which the memory on the contralateral side has been reported at three hours after training we see that the memory is available on the contralateral side immediately after training and moreover, training with trained side antenna coated with insulator does not prevent learning, pointing to a possible insufficiency of block of odor stimuli in this paradigm. Bee does not learn the odor stimuli applied to one side alone as a stimulus different from odor presented to both sides. Moreover the behaviour of the bee as a whole can be predicted if the sides are assumed to learn and store independently and the organism as a whole is able to retrieve the memory if either of the sides have learned.Summary StatementThe two halves of honeybee brain store and retrieve olfactory associative memories independently.


2014 ◽  
Author(s):  
Eamonn Mallon ◽  
Akram Alghamdi ◽  
Robert Holdbrook ◽  
Ezio Rosato

Psychoneuroimmunology studies the increasing number of connections between neurobiology, immunology and behaviour. We establish Drosophila melanogaster as a tractable model in this field by demonstrating the effects of the immune response on two fundamental behaviours: sleep and memory ability. We used the Geneswitch system to upregulate peptidoglycan receptor protein (PGRP) expression, thereby stimulating the immune system in the absence of infection. Geneswitch was activated by feeding the steroid RU486, to the flies. We used an aversive classical conditioning paradigm to quantify memory and measures of activity to infer sleep. Immune stimulated flies exhibited reduced levels of sleep, which could not be explained by a generalised increase in waking activity. The effects on sleep were more pronounced for day compared to night sleep. Immune stimulated flies also showed a reduction in memory abilities. These are important results as they establish Drosophila as a model for immune-neural interactions and provide a possible role for sleep in the interplay between the immune response and memory.


2021 ◽  
Author(s):  
Martin Klappenbach ◽  
Agustin E Lara ◽  
Fernando F Locatelli

Real-world experiences do often mix appetitive and aversive events. Understanding the ability of animals to extract, store and use this information is an important issue in neurobiology. We used honey bees as model to study learning and memory after a differential conditioning that combines appetitive and aversive training trials. First of all, we describe an aversive conditioning paradigm that constitutes a clear opposite of the well known appetitive olfactory conditioning of the proboscis extension response. A neutral odour is presented paired with the bitter substance quinine. Aversive memory is evidenced later as an odour-specific impairment in appetitive conditioning. Then we tested the effect of mixing appetitive and aversive conditioning trials distributed along the same training session. Differential conditioning protocols like this were used before to study the ability to discriminate odours, however they were not focused on whether appetitive and aversive memories are formed. We found that after a differential conditioning, honey bees establish independent appetitive and aversive memories that do not interfere with each other during acquisition or storage. Finally, we moved the question forward to retrieval and memory expression to evaluate what happens when appetitive and the aversive learned odours are mixed during test. Interestingly, opposite memories compete in a way that they do not cancel each other out. Honey bees showed the ability to switch from expressing appetitive to aversive memory depending on their satiation level.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 884
Author(s):  
Hong Zhang ◽  
Shuang Shan ◽  
Shaohua Gu ◽  
Xinzheng Huang ◽  
Zibo Li ◽  
...  

Bee responses to floral scent are usually influenced by both innate biases and prior experience. Honeybees are less attracted than bumblebees to tomato flowers. However, little is known about how tomato floral scent regulates the foraging behaviors of honeybees and bumblebees. In this study, the foraging behaviors of the honeybee Apis mellifera and the bumblebee Bombus lantschouensis on tomato flowers in greenhouses were investigated. Whether the two bee species exhibit different responses to tomato floral scent and how innate biases and prior experience influence bee choice behavior were examined. In the greenhouses, honeybees failed to collect pollen from tomato flowers, and their foraging activities decreased significantly over days. Additionally, neither naïve honeybees nor naïve bumblebees showed a preference for tomato floral scent in a Y-tube olfactometer. However, foraging experience in the tomato greenhouses helped bumblebees develop a strong preference for the scent, whereas honeybees with foraging experience continued to show aversion to tomato floral scent. After learning to associate tomato floral scent with a sugar reward in proboscis extension response (PER) assays, both bee species exhibited a preference for tomato floral scent in Y-tube olfactometers. The findings indicated that prior experience with a food reward strongly influenced bee preference for tomato floral scent.


1983 ◽  
Vol 97 (2) ◽  
pp. 107-119 ◽  
Author(s):  
M. E. Bitterman ◽  
R. Menzel ◽  
Andrea Fietz ◽  
Sabine Schäfer

Sociobiology ◽  
2017 ◽  
Vol 64 (2) ◽  
pp. 174 ◽  
Author(s):  
Zhiguo Li ◽  
Meng Li ◽  
Jingnan Huang ◽  
Changsheng Ma ◽  
Linchen Xiao ◽  
...  

Chlorpyrifos is a widely used organophosphorus insecticide. The acute oral 24 h median lethal dose (LD50) value of chlorpyrifos in Apis mellifera and in Apis cerana was estimated to assess differential acute chlorpyrifos toxicity in the two bee species. The LD50 values of chlorpyrifos in A. mellifera and in A. cerana are 103.4 ng/bee and 81.8 ng/bee, respectively, which suggests A. cerana bees are slightly more sensitive than A. mellifera bees to the toxicity of chlorpyrifos. Doses half the acute LD50 of chlorpyrifos were selected to study behavioral changes in the two bee species using proboscis extension response assay. A. mellifera foragers treated with chlorpyrifos showed significantly lower response to the 10% sucrose solution compared to control bees after 2, 24 and 48 h. Chlorpyrifos significantly impaired the olfactory learning abilities and 2 h memory retention of forager bees regardless of honey bee species, which may affect the foraging success of bees exposed to chlorpyrifos.


Sign in / Sign up

Export Citation Format

Share Document