scholarly journals Tree phylogenetic diversity promotes host–parasitoid interactions

2016 ◽  
Vol 283 (1834) ◽  
pp. 20160275 ◽  
Author(s):  
Michael Staab ◽  
Helge Bruelheide ◽  
Walter Durka ◽  
Stefan Michalski ◽  
Oliver Purschke ◽  
...  

Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se . This has, however, never been extended to species-rich forests and host–parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host–parasitoid networks were independent of the environment. Our study indicates that host–parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish.

2018 ◽  
Vol 285 (1890) ◽  
pp. 20181842 ◽  
Author(s):  
Colleen S. Nell ◽  
Luis Abdala-Roberts ◽  
Victor Parra-Tabla ◽  
Kailen A. Mooney

Biodiversity affects the structure of ecological communities, but little is known about the interactive effects of diversity across multiple trophic levels. We used a large-scale forest diversity experiment to investigate the effects of tropical tree species richness on insectivorous birds, and the subsequent indirect effect on predation rates by birds. Diverse plots (four tree species) had higher bird abundance (61%), phylogenetic diversity (61%), and functional diversity (55%) than predicted based on single-species monocultures, which corresponded to higher attack rates on artificial caterpillars (65%). Tree diversity effects on attack rate were driven by complementarity among tree species, with increases in attack rate observed on all tree species in polycultures. Attack rates on artificial caterpillars were higher in plots with higher bird abundance and diversity, but the indirect effect of tree species richness was mediated by bird diversity, providing evidence that diversity can interact across trophic levels with consequences tied to ecosystem services and function.


2017 ◽  
Vol 284 (1862) ◽  
pp. 20171489 ◽  
Author(s):  
Andreas Schuldt ◽  
Felix Fornoff ◽  
Helge Bruelheide ◽  
Alexandra-Maria Klein ◽  
Michael Staab

Interactions across trophic levels influence plant diversity effects on ecosystem functions, but the complexity of these interactions remains poorly explored. For example, the interplay between different interactions (e.g. mutualism, predation) might be an important moderator of biodiversity–ecosystem function relationships. We tested for relationships between trophobioses (facultative ant–hemipteran mutualism) and leaf chewer herbivory in a subtropical forest biodiversity experiment. We analysed trophobiosis and herbivory data of more than 10 000 trees along a tree species richness gradient. Against expectations, chewing damage was higher on trees with trophobioses. However, the net positive relationship between trophobioses and overall herbivory depended on tree species richness, being most pronounced at low richness. Our results point to indirect, positive effects of ant-tended sap suckers on leaf chewers, potentially by altering plant defences. Direct antagonistic relationships of trophobiotic ants and leaf-chewing herbivores—frequently reported to drive community-wide effects of trophobioses in other ecosystems—seemed less relevant. However, antagonistic interactions likely contributed to the attenuating effect of tree species richness, because trophobiotic ant and herbivore communities changed from monocultures to species-rich mixtures. Our findings, therefore, suggest that biodiversity loss might lead to complex changes in higher trophic level effects on ecosystem functions, mediated by both trophic and non-trophic interactions.


2019 ◽  
Vol 29 (3) ◽  
pp. 799-815
Author(s):  
Victor P. Zwiener ◽  
André A. Padial ◽  
Márcia C. M. Marques

2018 ◽  
Vol 9 (2) ◽  
pp. 322-330
Author(s):  
Rong Sun ◽  
Xiaojie Luo ◽  
Xiangyu Meng ◽  
Yan Wang

Abstract The streams in a watershed form a hierarchical network system. From the perspective of the river continuum, this classification system is the result of gradual increase in traffic. This study analyzed the riparian species richness, diversity and environmental factors along a six-order hierarchical mountain river in the Donghe watershed, China. A total of 34 sampling sites were sampled to study the spatial distribution of riparian plants among different stream orders. The results showed: Environmental factors among stream orders had significant differences. Among stream order, species richness showed remarkable differences. The species richness rose firstly and dropped afterwards except for tree species richness; tree species richness decreased while stream order increased. The same is true for shrub quadrat species richness. Shannon-Wiener diversity, Simpson dominance and Pielou uniformity showed significant difference among stream orders; Shannon-Wiener diversity rose firstly then dropped afterwards. For integrated environmental factors and community characteristics, we found the changes of stream orders had a significant impact on riparian habitats and riparian vegetation. Further analysis showed that riparian vegetation experienced different types and degrees of disturbance in different stream orders. This meant that a hierarchical management strategy should be applied to riparian vegetation management.


2021 ◽  
Vol 11 (1) ◽  
pp. 73-83
Author(s):  
MAHEDI HASAN LIMON ◽  
SAIDA HOSSAIN ARA ◽  
MOHAMMAD GOLAM KIBRIA

Natural regeneration is an indicator of a healthy forest, hence, understanding the influence of site factors on natural regeneration is a significant concern for ecologists. This work aimed to assess the impact of site factors on natural tree regeneration at Khadimnagar National Park (KNP). Biotic factors (tree density, tree species richness, and basal area), physical factors (elevation, canopy openness), and soil properties (bulk density, moisture content, soil pH, organic matter, sand, silt, and clay) data were investigated from 71 sample plots to examine their effects on natural regeneration density and richness in KNP. Stepwise multiple linear regression analysis was done to predict both regeneration density and regeneration richness. The results showed that soil pH (p<0.001), canopy openness (p<0.001), tree species richness (p<0.01), and bulk density (p<0.01) had a significant effect on regeneration density, explaining 42% of the total variation. Regeneration richness was driven by four factors: tree species richness (p<0.01), soil pH (p<0.001), elevation (p<0.01), and canopy openness (p<0.01) with a model that explained 60% of the total variation. This study observed that soil pH, tree species richness, and canopy openness are the main controlling factors that influenced both the density and richness of regenerating species in KNP. Therefore, these findings have implications for natural resource management, especially in selecting suitable silvicultural systems in a tropical forest under protected area management where enhanced tree cover and conservation of biodiversity are needed.


Ecology ◽  
2019 ◽  
Vol 100 (4) ◽  
pp. e02653 ◽  
Author(s):  
Lionel R. Hertzog ◽  
Roschong Boonyarittichaikij ◽  
Daan Dekeukeleire ◽  
Stefanie R. E. de Groote ◽  
Irene M. van Schrojenstein Lantman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document