scholarly journals Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data

2017 ◽  
Vol 284 (1846) ◽  
pp. 20162290 ◽  
Author(s):  
Mark N. Puttick ◽  
Joseph E. O'Reilly ◽  
Alastair R. Tanner ◽  
James F. Fleming ◽  
James Clark ◽  
...  

Morphological data provide the only means of classifying the majority of life's history, but the choice between competing phylogenetic methods for the analysis of morphology is unclear. Traditionally, parsimony methods have been favoured but recent studies have shown that these approaches are less accurate than the Bayesian implementation of the Mk model. Here we expand on these findings in several ways: we assess the impact of tree shape and maximum-likelihood estimation using the Mk model, as well as analysing data composed of both binary and multistate characters. We find that all methods struggle to correctly resolve deep clades within asymmetric trees, and when analysing small character matrices. The Bayesian Mk model is the most accurate method for estimating topology, but with lower resolution than other methods. Equal weights parsimony is more accurate than implied weights parsimony, and maximum-likelihood estimation using the Mk model is the least accurate method. We conclude that the Bayesian implementation of the Mk model should be the default method for phylogenetic estimation from phenotype datasets, and we explore the implications of our simulations in reanalysing several empirical morphological character matrices. A consequence of our finding is that high levels of resolution or the ability to classify species or groups with much confidence should not be expected when using small datasets. It is now necessary to depart from the traditional parsimony paradigms of constructing character matrices, towards datasets constructed explicitly for Bayesian methods.

2019 ◽  
Vol 12 (2) ◽  
pp. 74
Author(s):  
A. M. M. Shahiduzzaman Quoreshi ◽  
Reaz Uddin ◽  
Naushad Mamode Khan

This paper introduces Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data of unknown underlying distribution. The moments with conditional heteroscedasticity have been discussed. In a Monte Carlo experiment, it was found that the QML estimator performs as well as CLS and FGLS in terms of eliminating serial correlations, but the estimator can be sensitive to start value. Hence, two-stage QML has been suggested. In empirical estimation on two stock transaction data for Ericsson and AstraZeneca, the 2SQML turns out relatively more efficient than CLS and FGLS. The empirical results suggest that both of the series have long memory properties that imply that the impact of macroeconomic news or rumors in one point of time has a persistence impact on future transactions.


2013 ◽  
Vol 60 (2) ◽  
pp. 219-230 ◽  
Author(s):  
Piotr Lichota ◽  
Maciej Lasek

This article investigates identification of aircraft aerodynamic derivatives. The identification is performed on the basis of the parameters stored by Flight Data Recorder. The problem is solved in time domain by Quad-M Method. Aircraft dynamics is described by a parametric model that is defined in Body-Fixed-Coordinate System. Identification of the aerodynamic derivatives is obtained by Maximum Likelihood Estimation. For finding cost function minimum, Lavenberg-Marquardt Algorithm is used. Additional effects due to process noise are included in the state-space representation. The impact of initial values on the solution is discussed. The presented method was implemented in Matlab R2009b environment.


Author(s):  
Alexander Robitzsch

The Rasch model is one of the most prominent item response models. In this article, different item parameter estimation methods for the Rasch model are compared through a simulation study. The type of ability distribution, the number of items, and sample sizes were varied. It is shown that variants of joint maximum likelihood estimation and conditional likelihood estimation are competitive to marginal maximum likelihood estimation. However, efficiency losses of limited-information estimation methods are only modest. It can be concluded that in empirical studies using the Rasch model, the impact of the choice of an estimation method with respect to item parameters is almost negligible for most estimation methods. Interestingly, this sheds a somewhat more positive light on old-fashioned joint maximum likelihood and limited information estimation methods.


2020 ◽  
Vol 8 (1) ◽  
pp. 110-180
Author(s):  
David Goldstein

Abstract The last twenty or so years have witnessed a dramatic increase in the use of computational methods for inferring linguistic phylogenies. Although the results of this research have been controversial, the methods themselves are an undeniable boon for historical and Indo-European linguistics, if for no other reason than that they allow the field to pursue questions that were previously intractable. After a review of the advantages and disadvantages of computational phylogenetic methods, I introduce the following methods of phylogenetic inference in R: maximum parsimony; distance-based methods (UPGMA and neighbor joining); and maximum likelihood estimation. I discuss the strengths and weaknesses of each of these methods and in addition explicate various measures associated with phylogenetic estimation, including homoplasy indices and bootstrapping. Phylogenetic inference is carried out on the Indo-European dataset compiled by Don Ringe and Ann Taylor, which includes phonological, morphological, and lexical characters.


2021 ◽  
Author(s):  
Lateef Amusa ◽  
Temesgen Zewotir ◽  
Delia North

Abstract Unmeasured confounding can cause considerable problems in observational studies and may threaten the validity of the estimates of causal treatment effects. There has been discussion on the amount of bias in treatment effect estimates that can occur due to unmeasured confounding. We investigate the robustness of a relatively new causal inference technique, targeted maximum likelihood estimation (TMLE), in terms of its robustness to the impact of unmeasured confounders. We benchmark TMLE’s performance with the inverse probability of treatment weighting (IPW) method. We utilize a plasmode-like simulation based on variables and parameters from the Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT). We evaluated the accuracy and precision of the estimated treatment effects. Though TMLE performed better in most of the scenarios considered, our simulation study results suggest that both methods performed reasonably well in estimating the marginal odds ratio, in the presence of unmeasured confounding. Nonetheless, the only remedy to unobserved confounding is controlling for as many as available covariates in an observational study, because not even TMLE can provide safeguard against bias from unmeasured confounders.


Sign in / Sign up

Export Citation Format

Share Document