scholarly journals Intergroup aggression in meerkats

2019 ◽  
Vol 286 (1917) ◽  
pp. 20191993 ◽  
Author(s):  
Mark Dyble ◽  
Thomas M. Houslay ◽  
Marta B. Manser ◽  
Tim Clutton-Brock

Violent conflicts between groups have been observed among many species of group living mammals and can have important fitness consequences, with individuals being injured or killed and with losing groups surrendering territory. Here, we explore between-group conflict among meerkats ( Suricata suricatta ), a highly social and cooperatively breeding mongoose. We show that interactions between meerkat groups are frequently aggressive and sometimes escalate to fighting and lethal violence and that these interactions have consequences for group territories, with losing groups moving to sleeping burrows closer to the centre of their territories following an intergroup interaction and with winning groups moving further away. We find that larger groups and groups with pups are significantly more likely to win contests, but that the location of the contest, adult sex ratio, and mean within-group genetic relatedness do not predict contest outcome. Our results suggest that intergroup competition may be a major selective force among meerkats, reinforcing the success of large groups and increasing the vulnerability of small groups to extinction. The presence of both within-group cooperation and between-group hostility in meerkats make them a valuable point of comparison in attempts to understand the ecological and evolutionary roots of human warfare.

2018 ◽  
Vol 5 (3) ◽  
pp. 171798 ◽  
Author(s):  
J. Mitchell ◽  
S. Kyabulima ◽  
R. Businge ◽  
M. A. Cant ◽  
H. J. Nichols

Kin discrimination is often beneficial for group-living animals as it aids in inbreeding avoidance and providing nepotistic help. In mammals, the use of olfactory cues in kin discrimination is widespread and may occur through learning the scents of individuals that are likely to be relatives, or by assessing genetic relatedness directly through assessing odour similarity (phenotype matching). We use scent presentations to investigate these possibilities in a wild population of the banded mongoose Mungos mungo , a cooperative breeder in which inbreeding risk is high and females breed communally, disrupting behavioural cues to kinship. We find that adults show heightened behavioural responses to unfamiliar (extra-group) scents than to familiar (within-group) scents. Interestingly, we found that responses to familiar odours, but not unfamiliar odours, varied with relatedness. This suggests that banded mongooses are either able to use an effective behavioural rule to identify likely relatives from within their group, or that phenotype matching is used in the context of within-group kin recognition but not extra-group kin recognition. In other cooperative breeders, familiarity is used within the group and phenotype matching may be used to identify unfamiliar kin. However, for the banded mongoose this pattern may be reversed, most likely due to their unusual breeding system which disrupts within-group behavioural cues to kinship.


2015 ◽  
Vol 11 (7) ◽  
pp. 20150336 ◽  
Author(s):  
Lea Pollack ◽  
Dustin R. Rubenstein

Cooperative alliances among kin may not only lead to indirect fitness benefits for group-living species, but can also provide direct benefits through access to mates or higher social rank. However, the immigrant sex in most species loses any potential benefits of living with kin unless immigrants disperse together or recruit relatives into the group in subsequent years. To look for evidence of small subgroups of related immigrants within social groups (kin substructure), we used microsatellites to assess relatedness between immigrant females of the cooperatively breeding superb starling, Lamprotornis superbus. We determined how timing of immigration led to kin subgroup formation and if being part of one influenced female fitness. Although mean relatedness in groups was higher for males than females, 26% of immigrant females were part of a kin subgroup with a sister. These immigrant sibships formed through kin recruitment across years more often than through coalitions immigrating together in the same year. Furthermore, females were more likely to breed when part of a kin subgroup than when alone, suggesting that female siblings form alliances that may positively influence their fitness. Ultimately, kin substructure should be considered when determining the role of relatedness in the evolution of animal societies.


2015 ◽  
Vol 2 (9) ◽  
pp. 150135 ◽  
Author(s):  
Randal S. Olson ◽  
Patrick B. Haley ◽  
Fred C. Dyer ◽  
Christoph Adami

Even though grouping behaviour has been actively studied for over a century, the relative importance of the numerous proposed fitness benefits of grouping remain unclear. We use a digital model of evolving prey under simulated predation to directly explore the evolution of gregarious foraging behaviour according to one such benefit, the ‘many eyes’ hypothesis. According to this hypothesis, collective vigilance allows prey in large groups to detect predators more efficiently by making alarm signals or behavioural cues to each other, thereby allowing individuals within the group to spend more time foraging. Here, we find that collective vigilance is sufficient to select for gregarious foraging behaviour as long there is not a direct cost for grouping (e.g. competition for limited food resources), even when controlling for confounding factors such as the dilution effect. Furthermore, we explore the role of the genetic relatedness and reproductive strategy of the prey and find that highly related groups of prey with a semelparous reproductive strategy are the most likely to evolve gregarious foraging behaviour mediated by the benefit of vigilance. These findings, combined with earlier studies with evolving digital organisms, further sharpen our understanding of the factors favouring grouping behaviour.


2013 ◽  
Vol 280 (1765) ◽  
pp. 20131013 ◽  
Author(s):  
Stephan A. Reber ◽  
Simon W. Townsend ◽  
Marta B. Manser

Social monitoring of the actions of group members is thought to be a key development associated with group living. Humans constantly monitor the behaviour of others and respond to them in a flexible way depending on past interactions and the current social context. While other primates have also been reported to change their behaviour towards other group members flexibly based on the current state of their relationship, empirical evidence is typically linked to contextually specific events such as aggressive or reproductive interactions. In the cooperatively breeding meerkat ( Suricata suricatta ), we investigated whether subordinate females use frequently emitted, non-agonistic close calls to monitor the location of the dominant female and whether they subsequently adjust their response based on recent social interactions during conflict and non-conflict periods. Subjects discriminated between the close calls of the dominant female and control playbacks, responding by approaching the loudspeaker and displaying submissive behaviour only if they were currently threatened by eviction. Our results suggest that meerkats assess the risk for aggressive interactions with close associates depending on social circumstances, and respond accordingly. We argue that social monitoring based on non-agonistic cues is probably a common mechanism in group-living species that allows the adjustment of behaviour depending on variation in relationships.


2008 ◽  
Vol 4 (6) ◽  
pp. 606-609 ◽  
Author(s):  
Dik Heg

Suppression by dominants of female subordinate reproduction has been found in many vertebrate social groups, but has rarely been shown experimentally. Here experimental evidence is provided for reproductive suppression in the group-living Lake Tanganyika cichlid Neolamprologus pulcher . Within groups of three unrelated females, suppression was due to medium- and small-sized females laying less frequently compared with large females, and compared with medium females in control pairs. Clutch size and average egg mass of all females depended on body size, but not on rank. In a second step, a large female was removed from the group and a very small female was added to keep the group size constant. The medium females immediately seized the dominant breeding position in the group and started to reproduce as frequently as control pairs, whereas clutch size and egg mass did not change. These results show that female subordinate cichlids are reproductively capable, but apparently suppressed with respect to egg laying. Nevertheless, some reproduction is tolerated, possibly to ensure continued alloparental care by subordinate females.


2017 ◽  
Vol 4 (3) ◽  
pp. 160891 ◽  
Author(s):  
Shagun Jindal ◽  
Aneesh P. H. Bose ◽  
Constance M. O'Connor ◽  
Sigal Balshine

Infanticide and offspring cannibalism are taxonomically widespread phenomena. In some group-living species, a new dominant individual taking over a group can benefit from infanticide if doing so induces potential mates to become reproductively available sooner. Despite widespread observations of infanticide (i.e. egg cannibalism) among fishes, no study has investigated whether egg cannibalism occurs in fishes as a result of group takeovers, or how this type of cannibalism might be adaptive. Using the cooperatively breeding cichlid, Neolamprologus pulcher , we tested whether new unrelated males entering the dominant position in a social group were more likely to cannibalize eggs, and whether such cannibalism would shorten the interval until the female's next spawning. Females spawned again sooner if their broods were removed than if they were cared for. Egg cannibalism occurred frequently after a group takeover event, and was rarer if the original male remained with the group. While dominant breeder females were initially highly aggressive towards newcomer males that took over the group, the degree of resistance depended on relative body size differences between the new pair and, ultimately, female aggression did not prevent egg cannibalism. Egg cannibalism, however, did not shorten the duration until subsequent spawning, or increase fecundity during subsequent breeding in our laboratory setting. Our results show that infanticide as mediated through group takeovers is a taxonomically widespread behaviour.


The Condor ◽  
2000 ◽  
Vol 102 (3) ◽  
pp. 482-491 ◽  
Author(s):  
Susan J. Daniels ◽  
Jeffrey R. Walters

Abstract Natal dispersal is a key life-history component that may be influenced by the fitness consequences of inbreeding. We studied natal dispersal and inbreeding within a large population of cooperatively breeding, endangered Red-cockaded Woodpeckers (Picoides borealis). We assessed the costs of close inbreeding, the spatial distribution of related males and its relationship to dispersal distance of females, and the change in dispersal behavior of females in the presence of closely related males. Close inbreeding resulted in a significant loss of fitness, through two separate effects: closely related pairs (kinship coefficient ≥ 0.125) exhibited lowered hatching rates and lowered survival and recruitment of fledglings relative to unrelated pairs. Despite a highly predictable spatial clustering of closely related males near the female's natal territory, natal dispersal distance of females was not sufficient to avoid these males as mates. Females changed dispersal behavior in the presence of closely related males on the natal territory: female fledglings were significantly more likely to disperse from natal territories if there were closely related males breeding there in the following year. Females did not change dispersal behavior in the presence of related males that were not on the natal territory. We suggest that dispersal behavior is a trade-off between benefits of short-distance dispersal, e.g., an advantage in competing for scarce breeding vacancies, and the substantial cost of close inbreeding.


2006 ◽  
Vol 3 (1) ◽  
pp. 36-39 ◽  
Author(s):  
Øystein Holand ◽  
Kjartan R Askim ◽  
Knut H Røed ◽  
Robert B Weladji ◽  
Hallvard Gjøstein ◽  
...  

In polygynous species, mate choice is an integrated part of sexual selection. However, whether mate choice occurs independently of the genetic relatedness among mating pairs has received little attention, although inbreeding may have fitness consequences. We studied whether genetic relatedness influenced females' choice of partner in a highly polygynous ungulate—the reindeer ( Rangifer tarandus )—in an experimental herd during two consecutive rutting seasons; the herd consisting of 75 females in 1999 and 74 females in 2000 was exposed to three 4.5-year-old adults and three 1.5-year-old young males, respectively. The females' distribution during peak rut was not influenced by their genetic relatedness with the dominant males of the mating groups. Further, genetic relatedness did not influence the actual choice of mating partner. We conclude that inbreeding avoidance through mating group choice as well as choice of mating partner, two interconnected processes of female mate choice operating at two different scales in space and time, in such a highly female-biased reindeer populations with low level of inbreeding may not occur.


Sign in / Sign up

Export Citation Format

Share Document