scholarly journals Parallel evolution of Varroa resistance in honey bees: a common mechanism across continents?

2021 ◽  
Vol 288 (1956) ◽  
pp. 20211375
Author(s):  
Isobel Grindrod ◽  
Stephen J. Martin

The near-globally distributed ecto-parasitic mite of the Apis mellifera honeybee, Varroa destructor, has formed a lethal association with Deformed wing virus, a once rare and benign RNA virus. In concert, the two have killed millions of wild and managed colonies, particularly across the Northern Hemisphere, forcing the need for regular acaricide application to ensure colony survival. However, despite the short association (in evolutionary terms), a small but increasing number of A. mellifera populations across the globe have been surviving many years without any mite control methods. This long-term survival, or Varroa resistance, is consistently associated with the same suite of traits (recapping, brood removal and reduced mite reproduction) irrespective of location. Here we conduct an analysis of data extracted from 60 papers to illustrate how these traits connect together to explain decades of mite resistance data. We have potentially a unified understanding of natural Varroa resistance that will help the global industry achieve widespread miticide-free beekeeping and indicate how different honeybee populations across four continents have resolved a recent threat using the same suite of behaviours.

Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 94 ◽  
Author(s):  
Sofia Levin ◽  
Noa Sela ◽  
Tal Erez ◽  
David Nestel ◽  
Jeffery Pettis ◽  
...  

Varroa destructor is an ectoparasitic mite of Asian or Eastern honeybees Apis cerana (A. cerana) which has become a serious threat to European subspecies of Western honeybees Apis mellifera (A. mellifera) within the last century. V. destructor and its vectored honeybee viruses became serious threats for colony survival. This is a short period for pathogen- and host-populations to adapt. To look for possible variation in the composition of viral populations we performed RNA metagenomic analysis of the Western honeybee subspecies A. m. ligustica, A. m. syriaca, A. m. intermissa, and A. cerana and their respective V. destructor mites. The analysis revealed two novel viruses: Varroa orthomyxovirus-1 (VOV-1) in A. mellifera and V. destructor and a Hubei like-virga virus-14 homolog in V. destructor. VOV-1 was more prevalent in V. destructor than in A. mellifera and we found evidence for viral replication in both hosts. Interestingly, we found differences in viral loads of A. cerana and their V. destructor, A. m. intermissa, and its V. destructor showed partial similarity, while A. m. ligustica and A. m. syriaca and their varroa where very similar. Deformed wing virus exhibited 82.20%, 99.20%, 97.90%, and 0.76% of total viral reads in A. m. ligustica, A. m. syriaca, A. m. intermissa, and A. cerana, respectively. This is the first report of a complete segmented-single-stranded negative-sense RNA virus genome in honeybees and V. destructor mites.


Author(s):  
Jacques J M van Alphen ◽  
BartJan Fernhout

We refute a recent claim that parallel evolution in four European populations of honeybees has resulted in a not previously reported behavioural defence mechanism of the bees against the parasitic mite Varroa destructor, i.e. the ability of uncapping/recapping to reduce mite reproductive success. There are no data to support this claim, while there is a more plausible alternative interpretation of the reduced mite reproduction, i.e. reduction of mites through Varroa Sensitive Hygiene. We provide evidence why the former mechanism cannot explain resistance against Varroa in honeybees and the latter is instrumental in reducing Varroa populations.


2019 ◽  
Author(s):  
Jacques J M van Alphen ◽  
BartJan Fernhout

We refute a recent claim that parallel evolution in four European populations of honeybees has resulted in a not previously reported behavioural defence mechanism of the bees against the parasitic mite Varroa destructor, i.e. the ability of uncapping/recapping to reduce mite reproductive success. There are no data to support this claim, while there is a more plausible alternative interpretation of the reduced mite reproduction, i.e. reduction of mites through Varroa Sensitive Hygiene. We provide evidence why the former mechanism cannot explain resistance against Varroa in honeybees and the latter is instrumental in reducing Varroa populations.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1229
Author(s):  
Laura E. Brettell ◽  
Declan C. Schroeder ◽  
Stephen J. Martin

The global spread of a parasitic mite (Varroa destructor) has resulted in Deformed wing virus (DWV), a previously rare pathogen, now dominating the viromes in honey bees and contributing to large-scale honey bee colony losses. DWV can be found in diverse insect taxa and has been implicated in spilling over from honey bees into associated (“apiary”) and other (“non-apiary”) insects. Here we generated next generation sequence data from 127 insect samples belonging to diverse taxa collected from Hawaiian islands with and without Varroa to identify whether the mite has indirectly affected the viral landscapes of key insect taxa across bees, wasps, flies and ants. Our data showed that, while Varroa was associated with a dramatic increase in abundance of (predominantly recombinant) DWV in honey bees (and no other honey bee-associated RNA virus), this change was not seen in any other taxa sampled. Honey bees share their environment with other insect populations and exist as a homogenous group, frequently sharing common viruses, albeit at low levels. Our data suggest that the threat of Varroa to increase viral load in an apiary does not automatically translate to an increase in virus load in other insects living in the wider community.


2019 ◽  
Author(s):  
Jacques J M van Alphen ◽  
BartJan Fernhout

We refute a recent claim that parallel evolution in four European populations of honeybees has resulted in a not previously reported behavioural defence mechanism of the bees against the parasitic mite Varroa destructor, i.e. the ability of uncapping/recapping to reduce mite reproductive success. There are no data to support this claim, while there is a more plausible alternative interpretation of the reduced mite reproduction, i.e. reduction of mites through Varroa Sensitive Hygiene. We provide evidence why the former mechanism cannot explain resistance against Varroa in honeybees and the latter is instrumental in reducing Varroa populations.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Desiderato Annoscia ◽  
Gennaro Di Prisco ◽  
Andrea Becchimanzi ◽  
Emilio Caprio ◽  
Davide Frizzera ◽  
...  

AbstractThe neonicotinoid Clothianidin has a negative impact on NF-κB signaling and on immune responses controlled by this transcription factor, which can boost the proliferation of honey bee parasites and pathogens. This effect has been well documented for the replication of deformed wing virus (DWV) induced by Clothianidin in honey bees bearing an asymptomatic infection. Here, we conduct infestation experiments of treated bees to show that the immune-suppression exerted by Clothianidin is associated with an enhanced fertility of the parasitic mite Varroa destructor, as a possible consequence of a higher feeding efficiency. A conceptual model is proposed to describe the synergistic interactions among different stress agents acting on honey bees.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 873
Author(s):  
Yves Le Conte ◽  
Marina D. Meixner ◽  
Annely Brandt ◽  
Norman L. Carreck ◽  
Cecilia Costa ◽  
...  

Developing resistance to the varroa mite in honey bees is a major goal for apicultural science and practice, the development of selection strategies and the availability of resistant stock. Here we present an extended literature review and survey of resistant populations and selection programs in the EU and elsewhere, including expert interviews. We illustrate the practical experiences of scientists, beekeepers, and breeders in search of resistant bees. We describe numerous resistant populations surviving without acaricide treatments, most of which developed under natural infestation pressure. Their common characteristics: reduced brood development; limited mite population growth; and low mite reproduction, may cause conflict with the interests of commercial beekeeping. Since environmental factors affect varroa mite resistance, particular honey bee strains must be evaluated under different local conditions and colony management. The resistance traits of grooming, hygienic behavior and mite reproduction, together with simple testing of mite population development and colony survival, are significant in recent selection programs. Advanced breeding techniques and genetic and physiological selection tools will be essential in the future. Despite huge demand, there is no well-established market for resistant stock in Europe. Moreover, reliable experience or experimental evidence regarding the resistance of stocks under different environmental and management conditions is still lacking.


2019 ◽  
Vol 56 (4) ◽  
pp. 636-641 ◽  
Author(s):  
Roman V. Koziy ◽  
Sarah C. Wood ◽  
Ivanna V. Kozii ◽  
Claire Janse van Rensburg ◽  
Igor Moshynskyy ◽  
...  

Deformed wing virus (DWV) is a single-stranded RNA virus of honey bees ( Apis mellifera L.) transmitted by the parasitic mite Varroa destructor. Although DWV represents a major threat to honey bee health worldwide, the pathological basis of DWV infection is not well documented. The objective of this study was to investigate clinicopathological and histological aspects of natural DWV infection in honey bee workers. Emergence of worker honey bees was observed in 5 colonies that were clinically affected with DWV and the newly emerged bees were collected for histopathology. DWV-affected bees were 2 times slower to emerge and had 30% higher mortality compared to clinically normal bees. Hypopharyngeal glands in bees with DWV were hypoplastic, with fewer intracytoplasmic secretory vesicles; cells affected by apoptosis were observed more frequently. Mandibular glands were hypoplastic and were lined by cuboidal epithelium in severely affected bees compared to tall columnar epithelium in nonaffected bees. The DWV load was on average 1.7 × 106 times higher ( P < .001) in the severely affected workers compared to aged-matched sister honey bee workers that were not affected by deformed wing disease based on gross examination. Thus, DWV infection is associated with prolonged emergence, increased mortality during emergence, and hypoplasia of hypopharyngeal and mandibular glands in newly emerged worker honey bees in addition to previously reported deformed wing abnormalities.


2016 ◽  
Vol 113 (22) ◽  
pp. 6236-6241 ◽  
Author(s):  
Eugene Anatoly Yurtsev ◽  
Arolyn Conwill ◽  
Jeff Gore

Cooperation between microbes can enable microbial communities to survive in harsh environments. Enzymatic deactivation of antibiotics, a common mechanism of antibiotic resistance in bacteria, is a cooperative behavior that can allow resistant cells to protect sensitive cells from antibiotics. Understanding how bacterial populations survive antibiotic exposure is important both clinically and ecologically, yet the implications of cooperative antibiotic deactivation on the population and evolutionary dynamics remain poorly understood, particularly in the presence of more than one antibiotic. Here, we show that two Escherichia coli strains can form an effective cross-protection mutualism, protecting each other in the presence of two antibiotics (ampicillin and chloramphenicol) so that the coculture can survive in antibiotic concentrations that inhibit growth of either strain alone. Moreover, we find that daily dilutions of the coculture lead to large oscillations in the relative abundance of the two strains, with the ratio of abundances varying by nearly four orders of magnitude over the course of the 3-day period of the oscillation. At modest antibiotic concentrations, the mutualistic behavior enables long-term survival of the oscillating populations; however, at higher antibiotic concentrations, the oscillations destabilize the population, eventually leading to collapse. The two strains form a successful cross-protection mutualism without a period of coevolution, suggesting that similar mutualisms may arise during antibiotic treatment and in natural environments such as the soil.


2016 ◽  
Vol 113 (12) ◽  
pp. 3203-3208 ◽  
Author(s):  
Gennaro Di Prisco ◽  
Desiderato Annoscia ◽  
Marina Margiotta ◽  
Rosalba Ferrara ◽  
Paola Varricchio ◽  
...  

Honey bee colony losses are triggered by interacting stress factors consistently associated with high loads of parasites and/or pathogens. A wealth of biotic and abiotic stressors are involved in the induction of this complex multifactorial syndrome, with the parasitic mite Varroa destructor and the associated deformed wing virus (DWV) apparently playing key roles. The mechanistic basis underpinning this association and the evolutionary implications remain largely obscure. Here we narrow this research gap by demonstrating that DWV, vectored by the Varroa mite, adversely affects humoral and cellular immune responses by interfering with NF-κB signaling. This immunosuppressive effect of the viral pathogen enhances reproduction of the parasitic mite. Our experimental data uncover an unrecognized mutualistic symbiosis between Varroa and DWV, which perpetuates a loop of reciprocal stimulation with escalating negative effects on honey bee immunity and health. These results largely account for the remarkable importance of this mite–virus interaction in the induction of honey bee colony losses. The discovery of this mutualistic association and the elucidation of the underlying regulatory mechanisms sets the stage for a more insightful analysis of how synergistic stress factors contribute to colony collapse, and for the development of new strategies to alleviate this problem.


Sign in / Sign up

Export Citation Format

Share Document