scholarly journals XI. Experimental researches on the movement of atmospheric air in tubes

1856 ◽  
Vol 7 ◽  
pp. 466-475

In the year 1847, the author of this paper made numerous experiments for the purpose of ascertaining what are the conditions under which atmospheric air is placed with regard to motion or rest, when within a vertical tube having one extremity communicating within the interior of a building, and the other in the open atmosphere. The paper now submitted to the Royal Society contains the results of investigations undertaken in the year 1853 and continued to the present time, to ascertain whether the ordinary state of atmospheric air contained in a vertical cylindrical tube, open at both ends, and placed in the still atmosphere of a closed room, is one of rest or of motion; and if of motion, to investigate the influences of certain changes in the condition of the atmosphere which either produce, promote, retard, or arrest the movement.

1850 ◽  
Vol 140 ◽  
pp. 171-188 ◽  

Four years ago I suggested that all the phenomena presented by diamagnetic bodies, when subjected to the forces in the magnetic field, might be accounted for by assuming that they then possessed a polarity the same in kind as, but the reverse in direction of, that acquired by iron, nickel and ordinary magnetic bodies under the same circumstances (2429. 2430.). This view was received so favourably by Plücker, Reich and others, and above all by W. Weber, that I had great hopes it would be confirmed; and though certain experiments of my own (2497.) did not increase that hope, still my desire and expectation were in that direction. Whether bismuth, copper, phosphorus, &c., when in the magnetic field, are polar or not, is however an exceedingly important question; and very essential and great differences, in the mode of action of these bodies under the one view or the other, must be conceived to exist. I found that in every endeavour to proceed by induction of experiment from that which is known in this department of science to the unknown, so much uncertainty, hesitation and discomfort arose from the unsettled state of my mind on this point, that I determined, if possible, to arrive at some experimental proof either one way or the other. This was the more needful, because of the conclusion in the affirmative to which Weber had come in his very philosophical paper; and so important do I think it for the progress of science, that, in those imperfectly developed regions of knowledge, which form its boundaries, our conclusions and deductions should not go far beyond, or at all events not aside from the results of experiment (except as suppositions), that I do not hesitate to lay my present labours, though they arrive at a negative result, before the Royal Society.


1835 ◽  
Vol 125 ◽  
pp. 263-274

1119. I have lately had occasion to examine the voltaic trough practically, with a view to improvements in its construction and use; and though I do not pretend that the results have anything like the importance which attaches to the discovery of a new law or principle, I still think they are valuable, and may therefore, if briefly told, and in connexion with former papers, be worthy the approbation of the Royal Society. 16. On an improved form of the Voltaic Battery . 1120. In a simple voltaic circuit (and the same is true of the battery) the chemical forces which, during their activity, give power to the instrument, are generally divided into two portions; the one of these is exerted locally, whilst the other is transferred round the circle (947. 996.); the latter constitutes the electric current of the instru­ment, whilst the former is altogether lost or wasted. The ratio of these two portions of power may be varied to a great extent by the influence of circumstances: thus, in a battery not closed, all the action is local; in one of the ordinary construction, much is in circulation when the extremities are in communication; and in the perfect one, which I have described (1001.), all the chemical power circulates and becomes elec­tricity. By referring to the quantity of zinc dissolved from the plates (865. 1126.), and the quantity of decomposition effected in the volta-electrometer (711. 1126.) or elsewhere, the proportions of the local and transferred actions under any particular circumstances can be ascertained, and the efficacy of the voltaic arrangement, or the waste of chemical power at its zinc plates, be accurately determined.


1829 ◽  
Vol 119 ◽  
pp. 279-286 ◽  

Our communications to the Royal Society, as printed in the Phil, Trans. for 1808 and 1809, detailed the effects produced when the human subject or a guinea-pig respired, either atmospheric air alone, or pure oxygen, or a mixture of hydrogen and oxygen. We thought it would render the subject more com­plete if we extended our inquiries to the respiration of birds, and accordingly made several experiments with pigeons in the same apparatus that we employed for the guinea-pig. The apparatus is engraved and described in the Phil. Trans. for 1809, page 429. First experiment with atmospheric air. A pigeon was placed in the intermediate glass vessel, in 62 inches of air on the mahogany stand over quicksilver, between the two gasometers communi­cating with the vessel in which the pigeon was confined. One of the gaso­meters was empty, but connected by tubes and stop cocks with the quicksilver bath, and also with the intermediate vessel; the other contained the air for the supply of the pigeon. The barom. being 30.130, the therm. 54°, during 69 mi­nutes, at intervals of four or five minutes, 35 cubic inches at a time of com­mon air were slowly passed through the vessel in which the bird was con­fined; the other gasometer of course received what was pushed off, the quan­tity was noticed by its register, and a portion was received by a bottle in the quicksilver bath for examination; in this way 525 cubic inches of common air were supplied, to which the 62 cubic inches in the intermediate glass vessel being added, made a total of 587 cubic inches in which the pigeon had respired for 69 minutes. The registers of both gasometers agreed throughout to a very trifle, which confirmed our former observations, that there is no change in the volume of atmospheric air when respired under natural circumstances.


1833 ◽  
Vol 123 ◽  
pp. 23-54 ◽  

265. The progress of the electrical researches which I have had the honour to present to the Royal Society, brought me to a point at which it was essential for the further prosecution of my inquiries that no doubt should remain of the identity or distinction of electricities excited by different means. It is perfectly true that Cavendish, Wollaston, Colladon and others, have in turn removed some of the greatest objections to the acknowledgement of the identity of common, animal and voltaic electricity, and I believe that philosophers generally consider these electricities as really the same. But on the other hand it is also true, that the accuracy of Wollaston’s experiments has been denied, and that one of them, which really is no proof of chemical decomposition by common electricity (309. 327.), has been that selected by several experimenters as the test of chemical action (336. 346.). It is a fact, too, that many philosophers are still drawing distinctions between the electricities from different sources; or at least doubting whether their identity is proved. Sir Humphry Davy, for instance, in his paper on the Torpedo, thought it probable that animal electricity would be found of a peculiar kind; and referring to that, in association with common electricity, voltaic electricity and magnetism, has said, “Distinctions might be established in pursuing the various modifications or properties of electricity in these different forms, &c.” Indeed I need only refer to the last volume of the Philosophical Transactions to show that the question is by no means considered as settled. 266. Notwithstanding, therefore, the general impression of the identity of electricities, it is evident that the proofs have not been sufficiently clear and distinct to obtain approbation from all those who were competent to consider the subject; and the question seemed to me very much in the condition of that which Sir H. Davy solved so beautifully,—namely, whether voltaic electricity in all cases merely eliminated, or did not in some actually produce, the acid and alkali found after its action upon water. The same necessity that urged him to decide the doubtful point, which interfered with the extension of his views, and destroyed the strictness of his reasoning, has obliged me to ascertain the identity or difference of common and voltaic electricity. I have satisfied myself that they are identical, and I hope the proofs I have to offer, and the results flowing from them, will be found worthy the attention of the Royal Society.


The inquiries of the authors on human respiration, and on that of the guinea pig, and of which they communicated the details to the Royal Society in former papers, are here extended to the respiration of birds. Pigeons were the subjects of these experiments, and the same apparatus was employed as the one used for the guinea pig, described in the Philosophical Transactions for 1809. The object of the first experiment was to ascertain the changes which take place in atmospheric air when breathed by a bird in the most natural manner. For this purpose a pigeon was placed in a glass vessel containing 62 cubic inches of air, and commuuicating with two gasometers, one of which supplied from time to time fresh quantities of air, and the other received portions which become vitiated by respiration. The experiment lasted 69 minutes, and was produc­tive of no injury to the bird excepting a slight appearance of uneasiness whenever the supply of air was not sufficiently rapid. On ex­amining the air at the end of the experiment, no alteration had taken place either in the total volume of air, or in the proportion of azotewhich it contained; the only perceptible change being the substitu­tion of a certain quantity of carbonic acid for an equal volume of oxygen gas, amounting to about half a cubic inch per minute, and being equivalent to the addition of 96 grains of carbon in 24 hours.


The barometer, here alluded to, may in some measure be consi­dered as two separate and independent barometers, inasmuch as it is formed of two distinct tubes dipping into one and the same cistern of mercury. One of these tubes is made of flint glass, and the other of crown glass, with a view to ascertain whether, at the end of any given period, the one may have had any greater chemical effect on the mercury than the other, and thus affected the results. A brass rod, to which the scale is attached, passes through the framework, between the two tubes, and is thus common to both : one end of which is furnished with a fine agate point, which, by means of a rack and pinion moving the whole rod, may be brought just to touch the surface of the mercury in the cistern, the slightest contact with which is immediately discernible; and the other end of which bears the usual scale of inches, tenths, &c.; and there is a separate vernier for each tube. A small thermometer, the bulb of which dips into the mercury in the cistern, is inserted at the bottom : and an eye­piece is also there fixed, so that the agate point can be viewed with more distinctness and accuracy. The whole instrument is made to turn round in azimuth, in order to verify the perpendicularity of the tubes and the scale. It is evident that there are many advantages attending this mode of construction, which are not to be found in the barometers as usu­ally formed for general use in this country. The absolute heights are more correctly and more satisfactorily determined ; and the per­manency of true action is more effectually noticed and secured. For, every part is under the inspection and control of the observer; and any derangement or imperfection in either of the tubes is imme­diately detected on comparison with the other. And, considering the care that has been taken in filling the tubes, and setting off the scale, it may justly be considered as a standard barometer . The pre­sent volume of the Philosophical Transactions will contain the first register of the observations that have been made with this instru­ment.


The object of the inquiry detailed in the present paper is to determine at what degree of concentration the affinity of sulphuric acid for aqueous vapour is equal to that of anhydrous space for the same vapour at given temperatures. It has long been known that concentrated sulphuric acid abstracts moisture from the atmosphere, but the amount and the rate of this absorption have never been ascertained with accuracy; and consequently, in applying this acid to purposes of exsiccation, the experimenter has often been at a loss to know whether the acid was sufficiently strong to render the space in which it was confined perfectly anhydrous. By placing portions of the acid, previously weighed, and diluted with known quantities of water, under the receiver of an air-pump, with equal portions of concentrated acid, of the specific gravity 1·8428, in similar dishes, the author ascertained that the dilute acid could be concentrated to the specific gravity 1·814, at a temperature varying from 65° to 57°: whence he concludes that acid of such strength is capable of drying a vacuum when the temperature does not exceed 57°. By making similar experiments in air, the author compared together the weights lost by ten grains of dilute sulphuric acid of the specific gravity 1·135, at three different periods of the day for six days, taking note of the dew-point and the temperature; and infers that when the affinity of space for vapour, or the evaporating force, is equal to 0·15 of an inch of mercury, it is just able to balance the affinity for water of sulphuric acid of the specific gravity 1·249. The author next instituted a series of experiments to ascertain whether the evaporation of water from dilute sulphuric acid is capable of being carried on to the same extent in air as in vacuo, and found that the evaporating force of air exerted upon such acid is less than that of a vacuum at the same temperature. He observes that his experiments offer conclusive evidence that the evaporation of water is not owing to the existence of a chemical affinity between the vapour of the liquid and atmospheric air; but thinks that they favour the notion that the obstruction to this process in the open atmosphere is rather owing to the pressure than to the inertiæ of the particles of air. He is also of opinion that improvements will hereafter arise from this inquiry with regard to the economical management of the process of manufacturing sulphuric acid, which process would be greatly expedited by the regulated admission of steam into the condensing chambers kept at a constant high temperature.


Author(s):  
Derek Hull

Observ. XV. illustrated by Schem. IX. Figur:1 (figure 1 of this paper) in Robert Hooke's Micrographia (1665)1 is a description of Kettering–stone ‘which is brought from Kettering in Northampton–shire, and digg’d out of a Quarry, as I am inform'd’. As Curator of Experiments for the Royal Society from 1662, Hooke was charged by the Society to bring in at every meeting one microscopical observation at least. The minutes of the Society2 record that on 15 April 1663 ‘Mr Hooke showed the Company two Microscopicall Schemas; one representing the Pores of Cork … the other a Kettering Stone, appearing to be composed of Globules; and those hollow ones, each having 3 Coatings, sticking to one another, and so making up one entire firm stone’.


1809 ◽  
Vol 99 ◽  
pp. 146-147

Sir, According to your request, I send you an account of the facts I have ascertained, respecting a canal I discovered in the year 1803, in the medulla spinalis of the horse, bullock, sheep, hog, and dog; and should it appear to you deserving of being laid before the Royal Society, I shall feel myself particularly obliged, by having so great an honour conferred upon me. Upon tracing the sixth ventricle of the brain, which corresponds to the fourth in the human subject, to its apparent termination, the calamus scriptorius, I perceived the appearance of a canal, continuing by a direct course into the centre of the spinal marrow. To ascertain with accuracy whether such structure existed throughout its whole length, I made sections of the spinal marrow at different distances from the brain, and found that each divided portion exhibited an orifice with a diameter sufficient to admit a large sized pin; from which a small quantity of transparent colourless fluid issued, like that contained in the ventricles of the brain. The canal is lined by a membrane resembling the tunica arachnoidea, and is situated above the fissure of the medulla, being separated by a medullary layer: it is most easily distinguished where the large nerves are given off in the bend of the neck and sacrum, imperceptibly terminating in the cauda equina. Having satisfactorily ascertained its existence through the whole length of the spinal marrow, my next object was to discover whether it was a continued tube from one extremity to the other: this was most decidedly proved, by dividing the spinal marrow through the middle, and pouring mercury into the orifice where the canal was cut across, it passed in a small stream, with equal facility towards the brain (into which it entered), or in a contrary direction to where the spinal marrow terminates.


1832 ◽  
Vol 122 ◽  
pp. 539-574 ◽  

I have for some time entertained an opinion, in common with some others who have turned their attention tot he subject, that a good series of observations with a Water-Barometer, accurately constructed, might throw some light upon several important points of physical science: amongst others, upon the tides of the atmosphere; the horary oscillations of the counterpoising column; the ascending and descending rate of its greater oscillations; and the tension of vapour at different atmospheric temperatures. I have sought in vain in various scientific works, and in the Transactions of Philosophical Societies, for the record of any such observations, or for a description of an instrument calculated to afford the required information with anything approaching to precision. In the first volume of the History of the French Academy of Sciences, a cursory reference is made, in the following words, to some experiments of M. Mariotte upon the subject, of which no particulars appear to have been preserved. “Le même M. Mariotte fit aussi à l’observatoire des experiences sur le baromètre ordinaire à mercure comparé au baromètre à eau. Dans l’un le mercure s’eléva à 28 polices, et dans Fautre l’eau fut a 31 pieds Cequi donne le rapport du mercure à l’eau de 13½ à 1.” Histoire de I'Acadérmie, tom. i. p. 234. It also appears that Otto Guricke constructed a philosophical toy for the amusement of himself and friends, upon the principle of the water-barometer; but the column of water probably in this, as in all the other instances which I have met with, was raised by the imperfect rarefaction of the air in the tube above it, or by filling with water a metallic tube, of sufficient length, cemented to a glass one at its upper extremity, and fitted with a stop-cock at each end; so that when full the upper one might be closed and the lower opened, when the water would fall till it afforded an equipoise to the pressure of the atmo­sphere. The imperfections of such an instrument, it is quite clear, would render it totally unfit for the delicate investigations required in the present state of science; as, to render the observations of any value, it is absolutely necessary that the water should be thoroughly purged of air, by boiling, and its insinuation or reabsorption effectually guarded against. I was convinced that the only chance of securing these two necessary ends, was to form the whole length of tube of one piece of glass, and to boil the water in it, as is done with mercury in the common barometer. The practical difficulties which opposed themselves to such a construction long appeared to me insurmount­able; but I at length contrived a plan for the purpose, which, having been honoured with the approval of the late Meteorological Committee of this Society, was ordered to be carried into execution by the President and Council.


Sign in / Sign up

Export Citation Format

Share Document