scholarly journals III. Preliminary note on some aluminium compounds

1865 ◽  
Vol 14 ◽  
pp. 19-21 ◽  

Until recently the molecule of aluminic chloride had always been represented by the formula Al 2 Cl 3 , or, selecting the high atomic weight of aluminium, as required by its specific heat, A1 Cl 3 . But since Deville’s determination of the vapour-densities of aluminic and ferric chlorides, many chemists of eminence, both in this country and abroad, have adopted the formula Al 2 Cl 6 , and have consistently doubled the previously received formulæ for the entire series of aluminic compounds. In our opinion, however, the hitherto existing data seemed hardly sufficient for the definitive establishment of either set of formulæ; and it occurred to us that an examination of the so-called organo-compounds of aluminium might not improbably throw some important light upon the question at issue between them.

1883 ◽  
Vol 174 ◽  
pp. 601-613

I. Introductory. Ever since the discovery of glucinum by Vauquelin, in 1798, its atomic weight has been a disputed matter amongst chemists. Its discoverer considered that its oxide was a monoide, an opinion which was however strongly opposed by Berzelius, who wrote the oxide Gl 2 O 3 and the atomic weight 13⋅7 (O=16). The researches of Awdejew and Debrayt again turned the scale in favour of the earlier view, and as an atomic weight of 9⋅2 suited the properties of the metal in the tables of periodicy constructed by MM. Mendeleef and Lothar Meyer, this atomic weight has, up to quite recently, been generally accepted by chemists. As a welcome confirmation to this came a determination of the specific heat of the metal by Professor E. Reynolds, J who found that for its atomic heat to be near the normal number 6⋅0, its atomic weight must be 9⋅2 and not 13⋅8. Almost immediately afterwards a second determination of the specific heat was made by MM. Nilson and Petterson, who, however, obtained a result agreeing not with the lower atomic weight hut with the higher. The reasons for these conflicting opinions are to be found—first, in the anomalous position of glucinum among the elements; secondly, in the difficulties which surround the preparation of even small quantities of the free metal in a tolerably pure condition; and thirdly, in the fact that no volatile compound of glucinum is known of which the vapour density might be easily determined.


1883 ◽  
Vol 35 (224-226) ◽  
pp. 248-250

In the course of a paper by Professor Humpidge on the above subject, recently read before the Society, the author seeks to decide between the atomic weight 9·2 for beryllium, resulting from my comparison of the atomic heat of the element with that of silver and aluminium, and the value 13·8, arrived at by MM. Nilson and Pettersson by determination of specific heat.J The difference between the two possible atomic weights is so small, and the difficulties met with in attempting to prepare even a few decigrams of beryllium are so great, that both sets of experiments have been objected to on the ground, amongst others, that the metal employed was in all cases impure. My specimen admittedly contained a minute quantity of platinum, and the Proportion of known impurity in one of MM. Wilson and Pettersson's specimens reached 13 per cent. Unfortunately, Professor Humpidge's metal though claimed to be the purest yet prepared, is shown by analysis to be rather less pure than one of the specimens employed by Nilson and Pettersson, hence the experiments lately made known to the Society do not carry the inquiry beyond the point previously reached, save in one noteworthy particular, namely, that there appears to be a considerable, though irregular, rise in specific heat of the element as the proportion of impurity diminishes; but the value is still much below that required for the atomic weight 9·2. Thus for a specimen of beryllium which contained 13 per cent. of known of impurity Wilson and Pettersson obtained the specific heat 0·4084 between 0° and 100° C., and for a less impure specimen 0·425; while Professor Humpidge, in one of his experiments with a material that contained 6 per cent, of impurity, found the specific heat to be nearly 0·45 (0·4497). In all these cases corrections were applied which were believed to eliminate the effects due to the impurities known to be present—in part mechanically mixed with the metal and partly alloyed with it.


1900 ◽  
Vol 66 (424-433) ◽  
pp. 244-247 ◽  

The experiments described in this paper were begun with the object of assisting in the determination of the relative values of the atomic weights of cobalt and nickel, but were continued with the further purpose of testing the validity of the law of Dulong and Petit.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


1920 ◽  
Vol 12 (9) ◽  
pp. 891-894 ◽  
Author(s):  
Herbert S. Bailey ◽  
Carlton B. Edwards

1883 ◽  
Vol 35 (224-226) ◽  
pp. 44-48

Our attention has been directed for some time to a new determination of the atomic weight of manganese. This communication gives a succinct account of the results of the preliminary stages of such an inquiry, and although the further progress of the investigation may reveal some errors, still we feel convinced the final numbers can in no way differ materially from the present values, and therefore further delay in publication is unnecessary. The atomic weight of manganese has been determined by many chemists, but the resulting values vary considerably according to the special method selected. The results of the different investigators may be divided into two classes—those giving approximately 55 as the number, and those making it about 54. To the former class belong Turner, Berzelius, and Dumas, all of whom use the same method, viz., the determination of the silver chloride yielded by a weighed amount of chloride of manganese. Turner also made determinations from the analysis of the carbonate, and from the conversion of the monoxide into sulphate. Von Hauer used the same method as that employed by him in the determination of the atomic weight of cadmium, viz., the reduction of manganous sulphate to sulphide by ignition in a current of sulphuretted hydrogen. It is probable that this method is not very trustworthy, as, according to Schneider, the sulphide may be contaminated by oxysulphide. Schneider and Rawack belong to the second class of observers, the former employing the oxalate, and from its analysis calculating the atomic weight by deducting the weight of water and carbon dioxide obtained. Rawack, whose experiments were conducted in Schneider’s laboratory, weighed the water obtained by reducing manganoso-manganic oxide to manganous oxide.


Author(s):  
William Spens

I. While so much improvement has recently taken place in the arrangement and construction of various tables for facilitating calculations founded on existing data, very little has been done in the way of investigating and correcting the data themselves; and it is feared that the question of the rate of mortality among select lives is still involved in the greatest doubt and obscurity.II. It is not proposed in the present paper to go farther than to show that the rate of mortality, during the first year of selection, of select assured lives is so materially different from what it has hitherto been represented, as to lead to the inference that the data from which the erroneous deduction has been made cannot be true data for the ascertainment of the value of selection. To investigate the rate of mortality of select lives at separate ages, I conceive to be of the utmost importance for the elucidation of truth, and the proper direction of sanatory inquiries; but I do not consider that sufficient data at present exist for the determination of this, and these can only be obtained by a united inquiry. I shall be very happy if the present observations have any effect in hastening such an investigation, which sooner or later must be entered upon.


Sign in / Sign up

Export Citation Format

Share Document