scholarly journals II. On the secondary carpals, metacarpals, and digital rays in the wings of existing carinate birds

1888 ◽  
Vol 43 (258-265) ◽  
pp. 322-325 ◽  

In a paper "On the Morphology of Birds,” already sent in to the Royal Society, but not yet published, I have described certain additional parts in the wings of Gallinaceous birds. One of these lies on the radial side of the first metacarpal; the other two are on the ulnar side of the second and third metacarpals. These parts, which at first caused me considerable surprise, being wholly unexpected by me, are only part of what I have since found in other families.

The barometer, here alluded to, may in some measure be consi­dered as two separate and independent barometers, inasmuch as it is formed of two distinct tubes dipping into one and the same cistern of mercury. One of these tubes is made of flint glass, and the other of crown glass, with a view to ascertain whether, at the end of any given period, the one may have had any greater chemical effect on the mercury than the other, and thus affected the results. A brass rod, to which the scale is attached, passes through the framework, between the two tubes, and is thus common to both : one end of which is furnished with a fine agate point, which, by means of a rack and pinion moving the whole rod, may be brought just to touch the surface of the mercury in the cistern, the slightest contact with which is immediately discernible; and the other end of which bears the usual scale of inches, tenths, &c.; and there is a separate vernier for each tube. A small thermometer, the bulb of which dips into the mercury in the cistern, is inserted at the bottom : and an eye­piece is also there fixed, so that the agate point can be viewed with more distinctness and accuracy. The whole instrument is made to turn round in azimuth, in order to verify the perpendicularity of the tubes and the scale. It is evident that there are many advantages attending this mode of construction, which are not to be found in the barometers as usu­ally formed for general use in this country. The absolute heights are more correctly and more satisfactorily determined ; and the per­manency of true action is more effectually noticed and secured. For, every part is under the inspection and control of the observer; and any derangement or imperfection in either of the tubes is imme­diately detected on comparison with the other. And, considering the care that has been taken in filling the tubes, and setting off the scale, it may justly be considered as a standard barometer . The pre­sent volume of the Philosophical Transactions will contain the first register of the observations that have been made with this instru­ment.


Author(s):  
Derek Hull

Observ. XV. illustrated by Schem. IX. Figur:1 (figure 1 of this paper) in Robert Hooke's Micrographia (1665)1 is a description of Kettering–stone ‘which is brought from Kettering in Northampton–shire, and digg’d out of a Quarry, as I am inform'd’. As Curator of Experiments for the Royal Society from 1662, Hooke was charged by the Society to bring in at every meeting one microscopical observation at least. The minutes of the Society2 record that on 15 April 1663 ‘Mr Hooke showed the Company two Microscopicall Schemas; one representing the Pores of Cork … the other a Kettering Stone, appearing to be composed of Globules; and those hollow ones, each having 3 Coatings, sticking to one another, and so making up one entire firm stone’.


1809 ◽  
Vol 99 ◽  
pp. 146-147

Sir, According to your request, I send you an account of the facts I have ascertained, respecting a canal I discovered in the year 1803, in the medulla spinalis of the horse, bullock, sheep, hog, and dog; and should it appear to you deserving of being laid before the Royal Society, I shall feel myself particularly obliged, by having so great an honour conferred upon me. Upon tracing the sixth ventricle of the brain, which corresponds to the fourth in the human subject, to its apparent termination, the calamus scriptorius, I perceived the appearance of a canal, continuing by a direct course into the centre of the spinal marrow. To ascertain with accuracy whether such structure existed throughout its whole length, I made sections of the spinal marrow at different distances from the brain, and found that each divided portion exhibited an orifice with a diameter sufficient to admit a large sized pin; from which a small quantity of transparent colourless fluid issued, like that contained in the ventricles of the brain. The canal is lined by a membrane resembling the tunica arachnoidea, and is situated above the fissure of the medulla, being separated by a medullary layer: it is most easily distinguished where the large nerves are given off in the bend of the neck and sacrum, imperceptibly terminating in the cauda equina. Having satisfactorily ascertained its existence through the whole length of the spinal marrow, my next object was to discover whether it was a continued tube from one extremity to the other: this was most decidedly proved, by dividing the spinal marrow through the middle, and pouring mercury into the orifice where the canal was cut across, it passed in a small stream, with equal facility towards the brain (into which it entered), or in a contrary direction to where the spinal marrow terminates.


1832 ◽  
Vol 122 ◽  
pp. 539-574 ◽  

I have for some time entertained an opinion, in common with some others who have turned their attention tot he subject, that a good series of observations with a Water-Barometer, accurately constructed, might throw some light upon several important points of physical science: amongst others, upon the tides of the atmosphere; the horary oscillations of the counterpoising column; the ascending and descending rate of its greater oscillations; and the tension of vapour at different atmospheric temperatures. I have sought in vain in various scientific works, and in the Transactions of Philosophical Societies, for the record of any such observations, or for a description of an instrument calculated to afford the required information with anything approaching to precision. In the first volume of the History of the French Academy of Sciences, a cursory reference is made, in the following words, to some experiments of M. Mariotte upon the subject, of which no particulars appear to have been preserved. “Le même M. Mariotte fit aussi à l’observatoire des experiences sur le baromètre ordinaire à mercure comparé au baromètre à eau. Dans l’un le mercure s’eléva à 28 polices, et dans Fautre l’eau fut a 31 pieds Cequi donne le rapport du mercure à l’eau de 13½ à 1.” Histoire de I'Acadérmie, tom. i. p. 234. It also appears that Otto Guricke constructed a philosophical toy for the amusement of himself and friends, upon the principle of the water-barometer; but the column of water probably in this, as in all the other instances which I have met with, was raised by the imperfect rarefaction of the air in the tube above it, or by filling with water a metallic tube, of sufficient length, cemented to a glass one at its upper extremity, and fitted with a stop-cock at each end; so that when full the upper one might be closed and the lower opened, when the water would fall till it afforded an equipoise to the pressure of the atmo­sphere. The imperfections of such an instrument, it is quite clear, would render it totally unfit for the delicate investigations required in the present state of science; as, to render the observations of any value, it is absolutely necessary that the water should be thoroughly purged of air, by boiling, and its insinuation or reabsorption effectually guarded against. I was convinced that the only chance of securing these two necessary ends, was to form the whole length of tube of one piece of glass, and to boil the water in it, as is done with mercury in the common barometer. The practical difficulties which opposed themselves to such a construction long appeared to me insurmount­able; but I at length contrived a plan for the purpose, which, having been honoured with the approval of the late Meteorological Committee of this Society, was ordered to be carried into execution by the President and Council.


1868 ◽  
Vol 16 ◽  
pp. 254-258

The results of my researches on the chloroform-derivatives of the primary monamines, which, as I have shown, are isomeric with the nitriles, could not fail to direct my attention to allied groups of bodies, with the view of discovering similar isomerisms. In a note communicated to the Royal Society some months ago, I expressed the expectations which even then appeared to be justified in the following manner:—“In conclusion, I may be permitted to announce as everv probable the existence of a series of bodies isomeric with the sulphocyanides. Already M. Cloëz has shown that the action of chloride of cyanogen on ethylate of potassium gives rise to the formation of an ethylic cyanate possessing properties absolutely different from those belonging to the cyanate discovered by M. Wurtz. On comparing, on the other hand the properties of the methylic and ethylic sulphocyamdes with those of the sulphocyanides of allyl and phenyl, it can scarcely be doubted that we have here the representatives of two groups entirely different, and that the terms of the methyl- and ethyl-series which correspond to oil of mustard, and to the sulphocyanide of phenyl, still remain to be discovered. Experiments with which I am now engaged will show whether these bodies cannot be obtained by the action of the iodides of methyl and ethyl on sulphocyanide of silver."


The first record for Thursday, 27 October 1743,is an isolated entry written on a sheet of paper pasted on the inside cover of Minute Book No. 1; it lists the names of eight Members who each paid six shillings for the month to Mr Colebrook, the Treasurer, for four dinners to be ordered at i/6d.per head. The Treasurer had to order each Thursday ‘a dinner for six and pay nine shillings certain’ to the innkeeper of the Mitre Tavern in Fleet Street; ‘as many more as come to pay one-and-sixpence per head each’ but if more than six come, ‘the deficiency to be paid out of this Fund of -£2.8.0.’, the amount he had received that day. O f these eight men six were Fellows of the Royal Society and the other two became Fellows later.


On 4 March 1660—61 ‘glass bubbles’ were first introduced to a meeting of the Royal Society. According to the minutes, ‘The King sent by Sir Paul Neile five little glass bubbles, two with liquor in them, and the other three solid, in order to have the judgement of the society concerning them’ (1). The Royal Society responded with remarkable celerity: its amanuensis produced some more drops two days later, which ‘succeeded in the same manner with those sent by the king’ (2). A very full report of the experiments performed was given to the Royal Society on 14 August 1661 by the President, Sir Robert Moray (3). As the Royal Society did not at this time have a normal publication series the report was recorded in the Register Book (4) and first published by Merret as an appendix to his translation of Neri’s Art of Glass (5). Henry Oldenburg lent Sir Robert’s account to the French traveller Monconys in 1663 who made his own translation into French of the prescription for making the drops. Monconys published this prescription in the second part of his Voyages (6). The ‘bubbles’— the solid ones, at least— were what were later to be called ‘Prince Rupert’s drops’. (Those said to contain ‘liquor’ could have been something different, but were probably the same containing vacuoles and no actual liquid.) These objects, glass beads with the form of a tear-drop tapering to a fine tail, made (though that was not generally known at the time) by dripping molten glass into cold water, exhibited a paradoxical combination of strength and fragility not without interest to the materials scientist of the present day, and which could not fail to excite the imagination of natural (and not so natural) philosphers of the 17th century. The head withstands hammering on an anvil, or, as a more modern test, squeezing in a vice, indenting its steel jaws, without fracture: yet breaking the tail with finger pressure caused the whole to explode into powder.


The type of deformation under investigation is indicated by fig. 1. A rectangular plate ABCD is deformed into the shape A'B'C'D'. The two opposing edges AB, CD are shifted horizontally without alteration of length into the position A'B', C'D', the other boundaries AD, BC being kept free from external stress. In a paper which appeared in the 'Proc. Royal Society', December 28, 1911, Prof. E. G. Coker investigated this same type of deformation using optical methods to determine the distribution of stress along the centre line OX. He found that if the plate was square the shear stress along OX was distributed in a munner which was approximately parabolic. As the ratio of AD to AB decreased the curve of distribution first of all became flat-topped, and for yet smaller ratios two distinct humps made their appearance.


1695 ◽  
Vol 19 (234) ◽  
pp. 738-740 ◽  
Keyword(s):  

I Have had pretty good Hap in adding to my Roman Curiosities, Two entire Urns, both of the Blewish Grey Clay, but different Forms, with some of the burnt Bones, and Two other Vessels of the Red Clay the letter of them is almost in the Form of the Roman Simpulum or Guttus .


The author had already stated, in a former communication to the Royal Society, his having noticed that for several days previous to the settling of a swarm of bees in the cavity of a hollow tree adapted to their reception, a considerable number of these insects were incessantly employed in examining the state of the tree, and particularly of every dead knot above the cavity which appeared likely to admit water. He has since had an opportunity of observing that the bees who performed this task of inspection, instead of being the same individuals as he had formerly supposed, were in fact a continual succession of different bees; the whole number in the course of three days being such as to warrant the inference that not a single labouring bee ever emigrates in a swarm without having seen its proposed future habitation. He finds that the same applies not only to the place of permanent settlement, but also to that where the bees rest temporarily, soon after swarming, in order to collect their numbers. The swarms, which were the subjects of Mr. Knight’s experiments, showed a remarkable disposition to unite under the same queen. On one occasion a swarm, which had arisen from one of his hives, settled upon a bush at a distance of about twenty-five yards; but instead of collecting together into a compact mass, as they usually do, they remained thinly dispersed for nearly half an hour; after which, as if tired of waiting, they singly, one after the other, and not in obedience to any signal, arose and returned home. The next morning a swarm issued from a neighbouring hive, and proceeded to the same bush upon which the other bees had settled on the preceding day; collecting themselves into a mass, as they usually do when their queen is present. In a few minutes afterwards a very large assemblage of bees rushed from the hive from which the former swarm had issued, and proceeded directly to the one which had just settled, and instantly united with them. The author is led from these and other facts to conclude that such unions of swarms are generally, if not always, the result of previous concert and arrangement.


Sign in / Sign up

Export Citation Format

Share Document