A discussion concerning the floor of the northwest Indian Ocean - The Owen fracture zone and the northern end of the Carlsberg Ridge

Examination of the shape of the earthquake epicentre belt near Socotra led to the suggestion that a major fracture displaces the axis of the mid-ocean ridge in that area (Matthews 1963). Subsequent surveys have confirmed the existence of a fracture zone which extends 1500 miles from the coast near Karachi southwestwards to the middle of the Somali Basin. Linear ridges and troughs in the zone are associated with negative gravity anomalies but not with magnetic anomalies. Where the fracture zone crosses the line of the Carlsberg Ridge a sinuous trough is developed: south of this feature a characteristic pattern of magnetic anomalies is associated with the volcanic structures of the mid-ocean ridge, north of it a line of large non-magnetic seamounts has been found. It is concluded that the structure underlying the Owen fracture zone is a system of parallel transcurrent faults affecting the ocean floor only, at which the axis of the mid-ocean ridge suffers a net right lateral displacement of 170 mi.

2016 ◽  
Author(s):  
John Milsom ◽  
Phil Roach ◽  
Chris Toland ◽  
Don Riaroh ◽  
Chris Budden ◽  
...  

ABSTRACT As part of an ongoing exploration effort, approximately 4000 line-km of seismic data have recently been acquired and interpreted within the Comoros Exclusive Economic Zone (EEZ). Magnetic and gravity values were recorded along the seismic lines and have been integrated with pre-existing regional data. The combined data sets provide new constraints on the nature of the crust beneath the West Somali Basin (WSB), which was created when Africa broke away from Gondwanaland and began to move north. Despite the absence of clear sea-floor spreading magnetic anomalies or gravity anomalies defining a fracture zone pattern, the crust beneath the WSB has been generally assumed to be oceanic, based largely on regional reconstructions. However, inappropriate use of regional magnetic data has led to conclusions being drawn that are not supported by evidence. The identification of the exact location of the continent-ocean boundary (COB) is less simple than would at first sight appear and, in particular, recent studies have cast doubt on a direct correlation between the COB and the Davie Fracture Zone (DFZ). The new high-quality reflection seismic data have imaged fault patterns east of the DFZ more consistent with extended continental crust, and the accompanying gravity and magnetic surveys have shown that the crust in this area is considerably thicker than normal oceanic and that linear magnetic anomalies typical of sea-floor spreading are absent. Rifting in the basin was probably initiated in Karoo times but the generation of new oceanic crust may have been delayed until about 154 Ma, when there was a switch in extension direction from NW-SE to N-S. From then until about 120 Ma relative movement between Africa and Madagascar was accommodated by extension in the West Somali and Mozambique basins and transform motion along the DFZ that linked them. A new understanding of the WSB can be achieved by taking note of newly-emerging concepts and new data from adjacent areas. The better-studied Mozambique Basin, where comprehensive recent surveys have revealed an unexpectedly complex spreading history, may provide important analogues for some stages in WSB evolution. At the same time the importance of wide continent-ocean transition zones marked by the presence of hyper-extended continental crust has become widely recognised. We make use of these new insights in explaining the anomalous results from the southern WSB and in assessing the prospectivity of the Comoros EEZ.


1979 ◽  
Vol 16 (12) ◽  
pp. 2236-2262 ◽  
Author(s):  
P. R. Vogt

A growing body of evidence suggests that certain areas of high-amplitude (H) sea-floor spreading-type magnetic anomalies reflect FeTi-enriched basalts of high remanent magnetization. A worldwide tabulation of these 'H-zones' is presented, together with a review of pertinent geochemical, rock magnetic, and deep-tow data relevant to the hypothesis of magnetic telechemistry.' H-zones are found in two tectonic settings: (1) along 102–103 km long sections of spreading axis close to hot spots; and (2) in narrow bands extending a few hundred kilometres along the edges of some fracture zones. Amplitudes in both provinces are 1.5 to 5, typically 2 to 3 times normal, and the hot spot H-zones are known from spreading half-rates of 0.6 to 3.7 cm yr−1 The highest amplitudes, magnetizations, and FeTi enrichment (up to 15–18% FeOT and 2–3% TiO2) seem to occur where both provinces overlap, i.e., where fracture zones occur near hot spots, for example along the Blanco Fracture Zone south of the Juan de Fuca hot spot and along the Inca Fracture Zone east of the Galapagos hot spot. The FeTi enrichment appears to reflect shallow-depth crystal fractionation (plagioclase, augite, and olivine), which is more extensive near hot spots, and more generally for fast-spreading ridges. H-zones presently affect at least 2.6 × 103 km, or 6.5% of the Mid-Ocean Ridge axis. However, the total known H-area of 8.5 × 105 km2 represents only 0.3% of oceanic crust. This suggests that older H-zones remain to be discovered, or/and that conditions favoring the formation of FeTi basalt and H-anomalies are more prevalent now than they have been on the average for the last 108 years. Evidence for the latter is provided by the known expansion of the magnetically well surveyed Juan de Fuca, Galapagos, and Yermak (Arctic) H-zones in the last 5 million years.


1995 ◽  
Vol 32 (12) ◽  
pp. 2128-2146 ◽  
Author(s):  
Stephen J. Edwards

A detailed, integrated field, petrographic, and geochemical study of the Springers Hill area of the Bay of Islands ophiolite exposed in the Lewis Hills was undertaken to explain the anomalously high abundance of veins and dykes of chromitite, orthopyroxenite, and clinopyroxenite, and their associated dunites, hosted by a refractory harzburgite–dunite mixture. A geodynamic situation is presented, which is constrained by previous studies requiring formation of the Springers Hill mantle section at a ridge–fracture zone intersection, and the whole of the Bay of Islands ophiolite within a back-arc spreading environment. The veins and dykes formed during magmatism at the ridge–fracture zone intersection and along the fracture zone, as progressively hotter, more fertile (richer in clinopyroxene) asthenosphere ascended and was channelled up and along the fracture zone wall. Shallow melting of refractory harzburgite in the presence of subduction-derived hydrous fluids produced light rare earth element (LREE)-enriched boninitic magma from which crystallized chromitites, some of their associated dunites, and orthopyroxenites. This melting event dehydrated much of the mantle in and around the zone of partial melting. Continued rise and shallow partial melting of hotter, more fertile mantle under conditions of variable hydration generated LREE-depleted, low-Ti tholeiitic magma. This magma crystallized olivine clinopyroxenite, some associated dunite, and clinopyroxenite. The final magmatic event may have involved partial melting of mid-ocean-ridge basalt-bearing mantle at depth, ascent of the magma, and formation of massive wehrlite–lherzolite bodies at the ridge–fracture zone intersection and along the fracture zone. Ridge–fracture zone intersections in suprasubduction-zone environments are sites of boninitic and tholeiitic magmatism because refractory asthenospheric mantle may melt as it is channelled with subduction-derived fluids to shallow depths by the old, cold lithospheric wall of the fracture zone. Heat for melting is provided by the ascent of hotter, more fertile mantle. Extremely refractory magmas do not occur along "normal" oceanic fracture zones because volumes of highly refractory mantle are much less, subduction-derived hydrous fluids are not present, and fracture zone walls extend to shallower depths.


1992 ◽  
Vol 29 (11) ◽  
pp. 2329-2340 ◽  
Author(s):  
Brian J. Fryer ◽  
John D. Greenough

Oceanic-island tholeiitic basalts recovered from four sunken oceanic islands along the Reunion hot-spot trace show trace-element and mineralogical characteristics ranging from typical oceanic-island tholeiites to incompatible-element-depleted tholeiites resembling mid-ocean-ridge basalts. There are also variable degrees of magma evolution at each island. Noble metal (Au, Pd, Pt, Rh, Ru, Ir) abundances tend to decrease with magma evolution and with magma "alkalinity", indicating that the metals behave as compatible elements during crystal fractionation processes and during mantle melting processes. Palladium-to-iridium ratios also decrease with increasing alkalinity. Absolute abundances of elements such as Pd are higher than those in typical mid-ocean-ridge basalts, by factors up to 30, despite many major-element similarities with the latter. Comparison with other types of mafic rocks shows that Pd/Ir ratios increase with decreasing alkalinity in basaltic rocks but plunge to alkali-basalt values in komatiites. A model involving retention of low-melting-point Au, Pd, and Rh in mantle sulphides, which completely dissolve by intermediate percentages of melting, and the high-melting-point metals Ir and Ru in late-melting mantle alloys explains increasing Pd/Ir ratios with decreasing alkalinity (increasing melting percentages) in oceanic basalts and the low Pd/Ir ratios of high-percentage melt komatiites.The high noble metal concentrations in Indian Ocean basalts compared with basalts from many other ocean basins are most easily explained by higher concentrations in their source regions. This may be related to incomplete mixing of a post-core-formation meteoritic component of the upper mantle, or deep mantle plume-derived blebs of core material that either failed to reach the core, during core–mantle differentiation, or were plucked from the core by a convecting lower mantle. The latter is tentatively favoured due to the apparently higher noble metal concentrations in oceanic-island (plume) basalts.


Sixty heat flow values were measured along nine profiles across the Mid-Indian Ocean Ridge. The results were roughly of the same character as the ones previously reported for the South Atlantic Ridge. The correlation of high heat flow with the centre of the ridge was less pronounced. The scatter of heat flow values when plotted as a function of distance from the ridge was even greater. The average of all values is 1.35 /tcal cm -2 s -1 , indicating that over the surveyed area the heat flow is normal. The cause for the low values on the flanks of the ridge remains unknown. A right lateral displacement of about 200 km across the Vema Trench was measured from the offset of the magnetic anomaly on the ridge crest.


Sign in / Sign up

Export Citation Format

Share Document