Viscous centre modes in the stability of swirling poiseuille flow

Centre modes in the neighbourhoods of both branches of the neutral curve are identified for viscous rotating flow in a pipe when the Reynolds number is sufficiently large. Limit equations satisfied by these modes are established, and solutions are computed as functions of the azimuthal wavenumber and one additional parameter, p,say, representing the distance from a neutral curve; these compare favourably with existing calculations of the full equations at large but finite values of The question of the attainment of an inviscid limit as f-> oo is addressed, and it is shown that the solution on the unstable side of the neutral curve is dominantly viscous. The resulting highly oscillatory viscous modes are examined and are shown to be present throughout the region bounded by the neutral curve. It is anticipated that the results may have application in the study of vortex breakdown.

2000 ◽  
Vol 407 ◽  
pp. 291-314 ◽  
Author(s):  
V. SHANKAR ◽  
V. KUMARAN

The stability of fluid flow in a flexible tube to non-axisymmetric perturbations is analysed in this paper. In the first part of the paper, the equivalents of classical theorems of hydrodynamic stability are derived for inviscid flow in a flexible tube subjected to arbitrary non-axisymmetric disturbances. Perturbations of the form vi = v˜i exp [ik(x − ct) + inθ] are imposed on a steady axisymmetric mean flow U(r) in a flexible tube, and the stability of mean flow velocity profiles and bounds for the phase velocity of the unstable modes are determined for arbitrary values of azimuthal wavenumber n. Here r, θ and x are respectively the radial, azimuthal and axial coordinates, and k and c are the axial wavenumber and phase velocity of disturbances. The flexible wall is represented by a standard constitutive relation which contains inertial, elastic and dissipative terms. The general results indicate that the fluid flow in a flexible tube is stable in the inviscid limit if the quantity Ud[Gscr ]/dr [ges ] 0, and could be unstable for Ud[Gscr ]/dr < 0, where [Gscr ] ≡ rU′/(n2 + k2r2). For the case of Hagen–Poiseuille flow, the general result implies that the flow is stable to axisymmetric disturbances (n = 0), but could be unstable to non-axisymmetric disturbances with any non-zero azimuthal wavenumber (n ≠ 0). This is in marked contrast to plane parallel flows where two-dimensional disturbances are always more unstable than three-dimensional ones (Squire theorem). Some new bounds are derived which place restrictions on the real and imaginary parts of the phase velocity for arbitrary non-axisymmetric disturbances.In the second part of this paper, the stability of the Hagen–Poiseuille flow in a flexible tube to non-axisymmetric disturbances is analysed in the high Reynolds number regime. An asymptotic analysis reveals that the Hagen–Poiseuille flow in a flexible tube is unstable to non-axisymmetric disturbances even in the inviscid limit, and this agrees with the general results derived in this paper. The asymptotic results are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the critical Reynolds number obtained for inviscid instability to non-axisymmetric disturbances is much lower than the critical Reynolds numbers obtained in the previous studies for viscous instability to axisymmetric disturbances when the dimensionless parameter Σ = ρGR2/η2 is large. Here G is the shear modulus of the elastic medium, ρ is the density of the fluid, R is the radius of the tube and η is the viscosity of the fluid. The viscosity of the wall medium is found to have a stabilizing effect on this instability.


When two parallel plates move normal to each other with a slow time-dependent speed, the velocity field developed in the intervening film of fluid is approximately that of plane Poiseuille flow, except that the magnitude of the velocity is dependent on time and on the coordinate parallel to the planes. This fact is intrinsic to Reynolds’ lubrication theory, and can be shown to follow from the Navier-Stokes equations when both the modified Reynolds number ( Re M ) and an aspect ratio ( δ ) are small. The modified Reynolds number is the product of δ and an actual Reynolds number ( Re ), which is based on the gap between the planes and on a characteristic velocity. The occurrence of flow instability and of turbulence in the film depend on Re . Typical values of Re , which are known to be required for the linear instability of plane Poiseuille flow, are of order 6000. This condition can be achieved, even if Re M is of order 1, provided that δ is of order 10 -4 . Such parameter values are typical of lubrication problems. The Orr-Sommerfeld equation governing flow instability is derived in this paper by use of the WKBJ technique, δ being the approximate small parameter to represent the small length-scale of the disturbance oscillations compared with the larger scale of the basic laminar flow. However, the coefficients in the Orr-Sommerfeld equation depend on slow space and time variables. Consequently the eigenrelation, derivable from the Orr-Sommerfeld equation and the associated boundary conditions, constitutes a nonlinear first-order partial differential equation for a phase function. This equation is solved by use of Charpit’s method for certain special forms of the time-dependent gap between the planes, followed by detailed numerical calculations. The relation between time-dependence and flow instability is delineated by the calculated results. In detail the nature of the instability can be described as follows. We consider a disturbance wave at or near a particular station, the initial distribution of amplitude being gaussian in the slow coordinate parallel to the planes. In the context of the Orr-Sommerfeld equation and its eigenrelation, the particular station implies an equivalent Reynolds number, while the initial distribution of the disturbance wave implies an equivalent wavenumber. As time increases, the disturbance wave can be considered to move in the instability diagram of equivalent wavenumber against Reynolds number, in the sense that these parameters are time- and space-dependent for the evolution of the disturbance-wave system. For our detailed calculations we use a quadratic approximation to the eigenrelation, an approximation which is quite accurate. If the initial distribution implies a point within the neutral curve, when the plates are squeezed together the equivalent wavenumber falls while the equivalent Reynolds number rises, and amplification takes place until the lower branch of the neutral curve is nearly crossed. If the plates are pulled apart (dilatation) the equivalent wavenumber rises, while the Reynolds number drops, and amplification takes place until the upper branch of the neutral curve has been just crossed. In the case of dilatation the transition from amplification to damping takes place more quickly than for the case of squeezing, in part due to the geometry of the neutral curve.


1994 ◽  
Vol 263 ◽  
pp. 133-150 ◽  
Author(s):  
I. A. Frigaard ◽  
S. D. Howison ◽  
I. J. Sobey

The stability to linearized two-dimensional disturbances of plane Poiseuille flow of a Bingham fluid is considered. Bingham fluids exhibit a yield stress in addition to a plastic viscosity and this description is typically applied to drilling muds. A non-zero yield stress results in an additional parameter, a Bingham number, and it is found that the minimum Reynolds number for linear instability increases almost linearly with increasing Bingham number.


1970 ◽  
Vol 41 (4) ◽  
pp. 727-736 ◽  
Author(s):  
John J. Cassidy ◽  
Henry T. Falvey

In rotating flow moving axially through a straight tube, a helical vortex will be generated if the angular momentum flux is sufficiently large relative to the flux of linear momentum. This paper describes an experimental study of the occurrence, frequency and peak-to-peak amplitude of the wall pressure generated by this vortex. The experimental results are displayed in dimensionless form in terms of a Reynolds number, a momentum parameter and tube geometry.


2011 ◽  
Vol 684 ◽  
pp. 284-315 ◽  
Author(s):  
Andrew G. Walton

AbstractThe high-Reynolds-number stability of unsteady pipe flow to axisymmetric disturbances is studied using asymptotic analysis. It is shown that as the disturbance amplitude is increased, nonlinear effects first become significant within the critical layer, which moves away from the pipe wall as a result. It is found that the flow stabilizes once the basic profile has become sufficiently fully developed. By tracing the nonlinear neutral curve back to earlier times, it is found that in addition to the wall mode, which arises from a classical upper branch linear stability analysis, there also exists a nonlinear neutral centre mode, governed primarily by inviscid dynamics. The centre mode problem is solved numerically and the results show the existence of a concentrated region of vorticity centred on or close to the pipe axis and propagating downstream at almost the maximum fluid velocity. The connection between this structure and the puffs and slugs of vorticity observed in experiments is discussed.


1988 ◽  
Vol 187 ◽  
pp. 435-449 ◽  
Author(s):  
G. R. Ierley ◽  
W. V. R. Malkus

For steady-state turbulent flows with unique mean properties, we determine a sense in which the mean velocity is linearly supercritical. The shear-turbulence literature on this point is ambiguous. As an example, we reassess the stability of mean profiles in turbulent Poiseuille flow. The Reynolds & Tiederman (1967) numerical study is used as a starting point. They had constructed a class of one-dimensional flows which included, within experimental error, the observed profile. Their numerical solutions of the resulting Orr-Sommerfeld problems led them to conclude that the Reynolds number for neutral infinitesimal disturbances was twenty-five times the Reynolds number characterizing the observed mean flow. They found also that the first nonlinear corrections were stabilizing. In the realized flow, this latter conclusion appears incompatible with the former. Hence, we have sought a more complete set of velocity profiles which could exhibit linear instability, retaining the requirement that the observed velocity profile is included in the set. We have added two dynamically generated modifications of the mean. The first addition is a fluctuation in the curvature of the mean flow generated by a Reynolds stress whose form is determined by the neutrally stable Orr-Sommerfeld solution. We find that this can reduce the stability of the observed flow by as much as a factor of two. The second addition is the zero-average downstream wave associated with the above Reynolds stress. The three-dimensional linear instability of this modification can even render the observed flow unstable. Those wave amplitudes that just barely will ensure instability of the observed flow are determined. The relation of these particular amplitudes to the limiting conditions admitted by an absolute stability criterion for disturbances on the mean flow is found. These quantitative results from stability theory lie in the observationally determined Reynolds-Tiederman similarity scheme, and hence are insensitive to changes in Reynolds number.


1965 ◽  
Vol 23 (4) ◽  
pp. 737-747 ◽  
Author(s):  
T. H. Hughes ◽  
W. H. Reid

The effect of an adverse pressure gradient on the stability of a laminar boundary layer is considered in the limiting case when the skin friction at the wall vanishes, i.e. when U′(0) = 0. Such flows are not absolutely unstable as might have been expected but have a minimum critical Reynolds number of the order of 25. General results are given for the asymptotic behaviour of both the upper and lower branches of the neutral curve and a complete neutral curve is obtained for Pohlhausen's simple fourth-degree polynomial profile at separation.


2001 ◽  
Vol 428 ◽  
pp. 133-148 ◽  
Author(s):  
MORTEN BRØNS ◽  
LARS K. VOIGT ◽  
JENS N. SØRENSEN

The flow patterns in the steady, viscous flow in a cylinder with a rotating bottom and a free surface are investigated by a combination of topological and numerical methods. Assuming the flow is axisymmetric, we derive a list of possible bifurcations of streamline structures on varying two parameters, the Reynolds number and the aspect ratio of the cylinder. Using this theory we systematically perform numerical simulations to obtain the bifurcation diagram. The stability limit for steady flow is found and established as a Hopf bifurcation. We compare with the experiments by Spohn, Mory & Hopfinger (1993) and find both similarities and differences.


1977 ◽  
Vol 28 (4) ◽  
pp. 235-246 ◽  
Author(s):  
Yutaka Tsuji ◽  
Yoshinobu Morikawa ◽  
Toshihiro Nagatani ◽  
Masaaki Sakou

SummaryThe stability of a two-dimensional wall jet was studied theoretically and experimentally. As a result of the linear stability calculation, it was found that one eigenmode is separated into two modes when the Reynolds number is large, and inside a neutral stable curve in the α, R-plane there exists another neutral curve enclosing a stable region. Experimental results of small disturbances were compared with calculated results; agreement between them was satisfactory. It was found, further, that subharmonics of a predominant disturbance velocity component appear in the non-linear region.


1978 ◽  
Vol 87 (2) ◽  
pp. 233-241 ◽  
Author(s):  
A. Davey

The linear stability of Poiseuille flow in an elliptic pipe which is nearly circular is examined by regarding the flow as a perturbation of Poiseuille flow in a circular pipe. We show that the temporal damping rates of non-axisymmetric infinitesimal disturbances which are concentrated near the wall of the pipe are decreased by the ellipticity. In particular we estimate that if the length of the minor axis of the cross-section of the pipe is less than about 96 ½% of that of the major axis then the flow will be unstable and a critical Reynolds number will exist. Also we calculate estimates of the ellipticities which will produce critical Reynolds numbers ranging from 1000 upwards.


Sign in / Sign up

Export Citation Format

Share Document