Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution

Author(s):  
Axel Kleidon

The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system’s state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth’s past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning.

2010 ◽  
Vol 365 (1545) ◽  
pp. 1333-1334 ◽  
Author(s):  
Leonid M. Martyushev

The overwhelming majority of maximum entropy production applications to ecological and environmental systems are based on thermodynamics and statistical physics. Here, we discuss briefly maximum entropy production principle and raises two questions: (i) can this principle be used as the basis for non-equilibrium thermodynamics and statistical mechanics and (ii) is it possible to ‘prove’ the principle? We adduce one more proof which is most concise today.


2010 ◽  
Vol 365 (1545) ◽  
pp. 1303-1315 ◽  
Author(s):  
A. Kleidon

The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 293
Author(s):  
Gleb A. Zhernokleev ◽  
Leonid M. Martyushev

Nonlinear non-equilibrium thermodynamic relations have been constructed based on the generalized Ehrenfest–Klein model. Using these relations, the behavior of the entropy and its production in time at arbitrary deviations from equilibrium has been studied. It has been shown that the transient fluctuation theorem is valid for this model if a dissipation functional is treated as the thermodynamic entropy production.


2017 ◽  
Vol 42 (1) ◽  
pp. 1-30 ◽  
Author(s):  
Marc Siemer ◽  
Tobias Marquardt ◽  
Gerardo Valadez Huerta ◽  
Stephan Kabelac

AbstractA modeling study on a polymer electrolyte membrane fuel cell by means of non-equilibrium thermodynamics is presented. The developed model considers a one-dimensional cell in steady-state operation. The temperature, concentration and electric potential profiles are calculated for every domain of the cell. While the gas diffusion and the catalyst layers are calculated with established classical modeling approaches, the transport processes in the membrane are calculated with the phenomenological equations as dictated by the non-equilibrium thermodynamics. This approach is especially instructive for the membrane as the coupled transport mechanisms are dominant. The needed phenomenological coefficients are approximated on the base of conventional transport coefficients. Knowing the fluxes and their intrinsic corresponding forces, the local entropy production rate is calculated. Accordingly, the different loss mechanisms can be detected and quantified, which is important for cell and stack optimization.


2016 ◽  
Vol 18 (36) ◽  
pp. 24966-24983 ◽  
Author(s):  
Wolfgang Dreyer ◽  
Clemens Guhlke ◽  
Rüdiger Müller

Butler–Volmer equations can be recovered from a complete non-equilibrium thermodynamic model by application of asymptotic analysis. Thereby we gain insight into the coupling of different physical phenomena and can derive Butler–Volmer equations for very different materials and electrochemical systems.


Sign in / Sign up

Export Citation Format

Share Document