scholarly journals Localized structures in dissipative media: from optics to plant ecology

Author(s):  
M. Tlidi ◽  
K. Staliunas ◽  
K. Panajotov ◽  
A. G. Vladimirov ◽  
M. G. Clerc

Localized structures (LSs) in dissipative media appear in various fields of natural science such as biology, chemistry, plant ecology, optics and laser physics. The proposal for this Theme Issue was to gather specialists from various fields of nonlinear science towards a cross-fertilization among active areas of research. This is a cross-disciplinary area of research dominated by nonlinear optics due to potential applications for all-optical control of light, optical storage and information processing. This Theme Issue contains contributions from 18 active groups involved in the LS field and have all made significant contributions in recent years.

2020 ◽  
Author(s):  
Wenbin He ◽  
Meng Pang ◽  
Dung-Han Yeh ◽  
Jiapeng Huang ◽  
Philip Russell

Abstract Mode-locked lasers have been widely used to explore interactions between optical solitons, including bound-soliton states that may be regarded as "photonic molecules". Conventional mode-locked lasers normally however host at most only a few solitons, which means that stochastic behaviours involving large numbers of solitons cannot easily be studied under controlled experimental conditions. Here we report the use of an optoacoustically mode-locked fibre laser to create hundreds of temporal traps or "reactors" in parallel, within each of which multiple solitons can be isolated and controlled both globally and individually using all-optical method. We achieve on-demand synthesis and dissociation of soliton molecules within these reactors, in this way unfolding a novel panorama of diverse dynamics in which the statistics of multi-soliton interactions can be studied. The results are of crucial importance in understanding dynamical soliton interactions, and may motivate potential applications for all-optical control of ultrafast light fields in optical resonators.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Wenbin He ◽  
Meng Pang ◽  
Dung-Han Yeh ◽  
Jiapeng Huang ◽  
Philip. St. J. Russell

AbstractMode-locked lasers have been widely used to explore interactions between optical solitons, including bound-soliton states that may be regarded as “photonic molecules”. Conventional mode-locked lasers normally, however, host at most only a few solitons, which means that stochastic behaviours involving large numbers of solitons cannot easily be studied under controlled experimental conditions. Here we report the use of an optoacoustically mode-locked fibre laser to create hundreds of temporal traps or “reactors” in parallel, within each of which multiple solitons can be isolated and controlled both globally and individually using all-optical methods. We achieve on-demand synthesis and dissociation of soliton molecules within these reactors, in this way unfolding a novel panorama of diverse dynamics in which the statistics of multi-soliton interactions can be studied. The results are of crucial importance in understanding dynamical soliton interactions and may motivate potential applications for all-optical control of ultrafast light fields in optical resonators.


Author(s):  
Olle Eriksson ◽  
Anders Bergman ◽  
Lars Bergqvist ◽  
Johan Hellsvik

The time-integrated amount of data and stored information, is doubled roughly every eighteen months, and since the majority of the worlds information is stored in magnetic media, the possibility to write and retrieve information in a magnetic material at ever greater speed and with lower energy consumption, has obvious benefits for our society. Hence the seemingly simple switching of a magnetic unit, a bit, is a crucial process which defines how efficiently information can be stored and retrieved from a magnetic memory. Of particular interest here are the concepts of ultrafast magnetism and all-optical control of magnetism which have in recent decades become the basis for an intense research field. The motivation is natural; the mechanisms behind these phenomena are far from trivial and the technological implications are huge.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 908
Author(s):  
Fabrizio Ciciulla ◽  
Annamaria Zaltron ◽  
Riccardo Zamboni ◽  
Cinzia Sada ◽  
Francesco Simoni ◽  
...  

In this study, we present a new configuration of the recently reported optofluidic platform exploiting liquid crystals reorientation in lithium niobate channels. In order to avoid the threshold behaviour observed in the optical control of the device, we propose microchannels realized in a x-cut crystal closed by a z-cut crystal on the top. In this way, the light-induced photovoltaic field is not uniform inside the liquid crystal layer and therefore the conditions for a thresholdless reorientation are realized. We performed simulations of the photovoltaic effect based on the well assessed model for Lithium Niobate, showing that not uniform orientation and value of the field should be expected inside the microchannel. In agreement with the re-orientational properties of nematic liquid crystals, experimental data confirm the expected thresholdless behaviour. The observed liquid crystal response exhibits two different regimes and the response time shows an unusual dependence on light intensity, both features indicating the presence of additional photo-induced fields appearing above a light intensity of 107 W/m2.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cormac McDonnell ◽  
Junhong Deng ◽  
Symeon Sideris ◽  
Tal Ellenbogen ◽  
Guixin Li

AbstractRecent advances in the science and technology of THz waves show promise for a wide variety of important applications in material inspection, imaging, and biomedical science amongst others. However, this promise is impeded by the lack of sufficiently functional THz emitters. Here, we introduce broadband THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces, which exhibit unique optical functionalities. Using these new emitters, we experimentally demonstrate tunable linear polarization of broadband single cycle THz pulses, the splitting of spin states and THz frequencies in the spatial domain, and the generation of few-cycle pulses with temporal polarization dispersion. Finally, we apply the ability of spin control of THz waves to demonstrate circular dichroism spectroscopy of amino acids. Altogether, we achieve nanoscale and all-optical control over the phase and polarization states of the emitted THz waves.


2018 ◽  
Vol 6 (15) ◽  
pp. 1800345
Author(s):  
Matt Seaton ◽  
Alex Krasnok ◽  
Allan S. Bracker ◽  
Andrea Alù ◽  
Yanwen Wu

2018 ◽  
Vol 373 (1753) ◽  
pp. 20170244 ◽  
Author(s):  
Tim Ireland ◽  
Simon Garnier

The similarities between the structures built by social insects and by humans have led to a convergence of interests between biologists and architects. This new, de facto interdisciplinary community of scholars needs a common terminology and theoretical framework in which to ground its work. In this conceptually oriented review paper, we review the terms ‘information’, ‘space’ and ‘architecture’ to provide definitions that span biology and architecture. A framework is proposed on which interdisciplinary exchange may be better served, with the view that this will aid better cross-fertilization between disciplines, working in the areas of collective behaviour and analysis of the structures and edifices constructed by non-humans; and to facilitate how this area of study may better contribute to the field of architecture. We then use these definitions to discuss the informational content of constructions built by organisms and the influence these have on behaviour, and vice versa. We review how spatial constraints inform and influence interaction between an organism and its environment, and examine the reciprocity of space and information on construction and the behaviour of humans and social insects. This article is part of the theme issue ‘Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour’.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Nan Zhang ◽  
Yubin Fan ◽  
Kaiyang Wang ◽  
Zhiyuan Gu ◽  
Yuhan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document