scholarly journals Avalanches and extreme value statistics in interfacial crackling dynamics

Author(s):  
S. Santucci ◽  
K. T. Tallakstad ◽  
L. Angheluta ◽  
L. Laurson ◽  
R. Toussaint ◽  
...  

We study the avalanche and extreme statistics of the global velocity of a crack front, propagating slowly along a weak heterogeneous interface of a transparent polymethyl methacrylate block. The different loading conditions used (imposed constant velocity or creep relaxation) lead to a broad range of average crack front velocities. Our high-resolution and large dataset allows one to characterize in detail the observed intermittent crackling dynamics. We specifically measure the size S , the duration D , as well as the maximum amplitude of the global avalanches, defined as bursts in the interfacial crack global velocity time series. Those quantities characterizing the crackling dynamics follow robust power-law distributions, with scaling exponents in agreement with the values predicted and obtained in numerical simulations of the critical depinning of a long-range elastic string, slowly driven in a random medium. Nevertheless, our experimental results also set the limit of such model which cannot reproduce the power-law distribution of the maximum amplitudes of avalanches of a given duration reminiscent of the underlying fat-tail statistics of the local crack front velocities. This article is part of the theme issue ‘Statistical physics of fracture and earthquakes’.

2022 ◽  
Vol 2022 (1) ◽  
pp. 013203
Author(s):  
Claude Godrèche

Abstract What is the probability that a needle dropped at random on a set of points scattered on a line segment does not fall on any of them? We compute the exact scaling expression of this hole probability when the spacings between the points are independent identically distributed random variables with a power-law distribution of index less than unity, implying that the average spacing diverges. The theoretical framework for such a setting is renewal theory, to which the present study brings a new contribution. The question posed here is also related to the study of some correlation functions of simple models of statistical physics.


Author(s):  
Cem Cagri Donmez

Econophysicists have begun to make progress in answering significant questions. In particular, these collaborations have the potential to change the paradigm for understanding fluctuations. New theoretical approaches to predict complex markets may be proposed, by the captivating formulation of the stock market concerning statistical correlation to be given, where some simple (non-differential, non-fractal) expressions are also suggested as general stock price formulae in a closed form that can generate a variety of possible price movements in time. A given attribute of mechanics may be submitted as a likely option to cover the price movements regarding traditional concepts where utilising stock mechanics to grow the portfolios in real markets may be realised. The ideas prove useful in risk evaluation, extreme value statistics, critical limit theorems for sums of independent variables with power law distribution, random walks, fractals, and multfractal formalisms, etc.


1994 ◽  
Vol 50 (4) ◽  
pp. 2467-2473 ◽  
Author(s):  
Jean-Marc Debierre ◽  
R. Mark Bradley

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Blai Casals ◽  
Karin A. Dahmen ◽  
Boyuan Gou ◽  
Spencer Rooke ◽  
Ekhard K. H. Salje

AbstractAcoustic emission (AE) measurements of avalanches in different systems, such as domain movements in ferroics or the collapse of voids in porous materials, cannot be compared with model predictions without a detailed analysis of the AE process. In particular, most AE experiments scale the avalanche energy E, maximum amplitude Amax and duration D as E ~ Amaxx and Amax ~ Dχ with x = 2 and a poorly defined power law distribution for the duration. In contrast, simple mean field theory (MFT) predicts that x = 3 and χ = 2. The disagreement is due to details of the AE measurements: the initial acoustic strain signal of an avalanche is modified by the propagation of the acoustic wave, which is then measured by the detector. We demonstrate, by simple model simulations, that typical avalanches follow the observed AE results with x = 2 and ‘half-moon’ shapes for the cross-correlation. Furthermore, the size S of an avalanche does not always scale as the square of the maximum AE avalanche amplitude Amax as predicted by MFT but scales linearly S ~ Amax. We propose that the AE rise time reflects the atomistic avalanche time profile better than the duration of the AE signal.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kai Zhao ◽  
Mirco Musolesi ◽  
Pan Hui ◽  
Weixiong Rao ◽  
Sasu Tarkoma

2004 ◽  
Vol 13 (07) ◽  
pp. 1345-1349 ◽  
Author(s):  
JOSÉ A. S. LIMA ◽  
LUCIO MARASSI

A generalization of the Press–Schechter (PS) formalism yielding the mass function of bound structures in the Universe is given. The extended formula is based on a power law distribution which encompasses the Gaussian PS formula as a special case. The new method keeps the original analytical simplicity of the PS approach and also solves naturally its main difficult (the missing factor 2) for a given value of the free parameter.


2011 ◽  
Vol 116 (A10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Andrew B. Collier ◽  
Thomas Gjesteland ◽  
Nikolai Østgaard

Sign in / Sign up

Export Citation Format

Share Document