scholarly journals Crystal-plane-dependent effects of antifreeze glycoprotein impurity for ice growth dynamics

Author(s):  
Yoshinori Furukawa ◽  
Ken Nagashima ◽  
Shunichi Nakatsubo ◽  
Salvador Zepeda ◽  
Ken-ichiro Murata ◽  
...  

An impurity effect on ice crystal growth in supercooled water is an important subject in relation to ice crystal formation in various conditions in the Earth's cryosphere regions. In this review, we consider antifreeze glycoprotein molecules as an impurity. These molecules are well known as functional molecules for controlling ice crystal growth by their adsorption on growing ice/water interfaces. Experiments on free growth of ice crystals in supercooled water containing an antifreeze protein were conducted on the ground and in the International Space Station, and the normal growth rates for the main crystallographic faces of ice, namely, basal and prismatic faces, were precisely measured as functions of growth conditions and time. The crystal-plane-dependent functions of AFGP molecules for ice crystal growth were clearly shown. Based on the magnitude relationship for normal growth rates among basal, prismatic and pyramidal faces, we explain the formation of a dodecahedral external shape of an ice crystal in relation to the key principle governing the growth of polyhedral crystals. Finally, we emphasize that the crystal-plane dependence of the function of antifreeze proteins on ice crystal growth relates to the freezing prevention of living organisms in sub-zero temperature conditions. This article is part of the theme issue ‘The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets’.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yoshinori Furukawa ◽  
Ken Nagashima ◽  
Shun-ichi Nakatsubo ◽  
Izumi Yoshizaki ◽  
Haruka Tamaru ◽  
...  

2009 ◽  
Vol 10 (2) ◽  
pp. 328-333 ◽  
Author(s):  
Matthew I. Gibson ◽  
Carl A. Barker ◽  
Sebastian G. Spain ◽  
Luca Albertin ◽  
Neil R. Cameron

1999 ◽  
Vol 29 ◽  
pp. 169-175 ◽  
Author(s):  
Li Jun ◽  
T.H. Jacka

AbstractCrystal growth in firn and shallow ice is studied by examining crystal size and ,c-axis orientation fabrics in two ice cores drilled at sites Dome Summit South and DE08, near the summit of Law Dome, East Antarctica. The snow-accumulation rates at the core sites are particularly high (640 and 1160 kg m−2 a−1, respectively) compared to other Antarctic sites. Crystal-growth rates above the firn/ice transition depth (at 70-80 m) are found to be in agreement with the generally used growth-rate-temperature relation (Stephenson, 1967; Gow, 1969), sometimes referred to as "normal grain growth". In the shallow ice layers below this depth and down to about 300 m, the observed crystal-growth rates are enhanced compared to normal grain growth. Also in this shallow ice, crystal ,c-axis orientation measurements show development of anisotropic fabrics indicative of ice flow at strains well above 1%.In earlier work, Jacka and Li (1994) described the development in clean ice of steady-state ice-crystal size (inversely proportional to the stress and largely independent of temperature) during the onset of flow-related crystal anisotropy, i.e. dynamic recrystallisation. It is concluded here that as a consequence of the high accumulation rates, relatively high deformation rates are generated in the shallow ice. The deformation rates are sufficiently high that "dynamic recrystallisation" takes over from "normal crystal growth" as the dominant crystal-growth mechanism. This leads to a rapid increase in crystal size from the slow-growing small firn crystals towards the larger size appropriate to the stress.


2012 ◽  
Vol 24 (3) ◽  
pp. 259-268 ◽  
Author(s):  
Clive W. Evans ◽  
Linn Hellman ◽  
Martin Middleditch ◽  
Joanna M. Wojnar ◽  
Margaret A. Brimble ◽  
...  

AbstractEvolutionary disparate Antarctic notothenioids and Arctic gadids have adapted to their freezing environments through the elaboration of essentially identical antifreeze glycoproteins (AFGPs). Here we show that this convergence of molecular identity, which evolved from unrelated parent genes, extends to convergence in physiological deployment. Both fish groups synthesize AFGPs in the exocrine pancreas from where they are discharged into the gut to inhibit the growth of ingested ice. Antifreeze glycoproteins not lost with the faeces are resorbed from the gut via the rectal epithelium, transported to the blood and ultimately secreted into the bile, from where they re-enter the gastrointestinal tract. Antifreeze glycoprotein recirculation conserves energy expenditure and explains how high levels of AFGPs reach the blood in notothenioids since, unlike Arctic gadids which also synthesize AFGP in the liver, AFGP secretion in notothenioids is directed exclusively towards the gastrointestinal lumen. Since AFGPs function by inhibiting ice crystal growth, ice must be present for them to function. The two fish groups are thus faced with an identical problem of how to deal with internal ice. Here we show that both accumulate AFGPs within ellipsoidal macrophages of the spleen, presumably adsorbed to phagocytosed ice crystals which are then held until a warming event ensues.


Author(s):  
William P. Sharp ◽  
Robert W. Roberson

The aim of ultrastructural investigation is to analyze cell architecture and relate a functional role(s) to cell components. It is known that aqueous chemical fixation requires seconds to minutes to penetrate and stabilize cell structure which may result in structural artifacts. The use of ultralow temperatures to fix and prepare specimens, however, leads to a much improved preservation of the cell’s living state. A critical limitation of conventional cryofixation methods (i.e., propane-jet freezing, cold-metal slamming, plunge-freezing) is that only a 10 to 40 μm thick surface layer of cells can be frozen without distorting ice crystal formation. This problem can be allayed by freezing samples under about 2100 bar of hydrostatic pressure which suppresses the formation of ice nuclei and their rate of growth. Thus, 0.6 mm thick samples with a total volume of 1 mm3 can be frozen without ice crystal damage. The purpose of this study is to describe the cellular details and identify potential artifacts in root tissue of barley (Hordeum vulgari L.) and leaf tissue of brome grass (Bromus mollis L.) fixed and prepared by high-pressure freezing (HPF) and freeze substitution (FS) techniques.


Author(s):  
I. Taylor ◽  
P. Ingram ◽  
J.R. Sommer

In studying quick-frozen single intact skeletal muscle fibers for structural and microchemical alterations that occur milliseconds, and fractions thereof, after electrical stimulation, we have developed a method to compare, directly, ice crystal formation in freeze-substituted thin sections adjacent to all, and beneath the last, freeze-dried cryosections. We have observed images in the cryosections that to our knowledge have not been published heretofore (Figs.1-4). The main features are that isolated, sometimes large regions of the sections appear hazy and have much less contrast than adjacent regions. Sometimes within the hazy regions there are smaller areas that appear crinkled and have much more contrast. We have also observed that while the hazy areas remain still, the regions of higher contrast visibly contract in the beam, often causing tears in the sections that are clearly not caused by ice crystals (Fig.3, arrows).


Sign in / Sign up

Export Citation Format

Share Document