scholarly journals The carbon cycle and carbon dioxide over Phanerozoic time: the role of land plants

Author(s):  
Robert A. Berner

A model (GEOCARB) of the long–term, or multimillion year, carbon cycle has been constructed which includes quantitative treatment of (1) uptake of atmospheric CO 2 by the weathering of silicate and carbonate rocks on the continents, and the deposition of carbonate minerals and organic matter in oceanic sediments; and (2) the release of CO 2 to the atmosphere via the weathering of kerogen in sedimentary rocks and degassing resulting from the volcanic–metamorphic–diagenetic breakdown of carbonates and organic matter at depth. Sensitivity analysis indicates that an important factor affecting CO 2 was the rise of vascular plants in the Palaeozoic. A large Devonian drop in CO 2 was brought about primarily by the acceleration of weathering of silicate rock by the development of deeply rooted plants in well–drained upland soils. The quantitative effect of this accelerated weathering has been crudely estimated by present–day field studies where all factors affecting weathering, other than the presence or absence of vascular plants, have been held relatively constant. An important additional factor, bringing about a further CO 2 drop into the Carboniferous and Permian, was enhanced burial of organic matter in sediments, due probably to the production of microbially resistant plant remains (e.g. lignin). Phanerozoic palaeolevels of atmospheric CO 2 calculated from the GEOCARB model generally agree with independent estimates based on measurements of the carbon isotopic composition of palaeosols and the stomatal index for fossil plants. Correlation of CO 2 levels with estimates of palaeoclimate suggests that the atmospheric greenhouse effect has been a major factor in controlling global climate over the past 600 million years.

2012 ◽  
Vol 8 (3) ◽  
pp. 2075-2110 ◽  
Author(s):  
G. Paris ◽  
Y. Donnadieu ◽  
V. Beaumont ◽  
F. Fluteau ◽  
Y. Goddéris

Abstract. The Triassic-Jurassic boundary (TJB) is associated with one of the five largest mass extinctions of the Phanerozoic. A deep carbon cycle perturbation and a carbonate production crisis are observed during the late Triassic. The Central Atlantic Magmatic Province (CAMP), one of the most important large igneous provinces of the Phanerozoic, emplaced at the TJB. To understand the carbon cycle perturbations observed at the TJB, we investigate the consequences of CO2 degassing associated to the CAMP emplacement on atmospheric and oceanic carbon cycle. The CO2 input within the atmosphere due to volcanism has been modeled using a global biogeochemical cycle box model (COMBINE) coupled with a climate model (FOAM). Weathering fluxes and CO2 equilibrium are constrained by the Rhaetian paleogeography and different scenarios of the CAMP emplacement are modeled. The study focuses (1) on the geological record and the carbonate productions crisis and (2) on the sedimentary carbon isotope record. For point (1), comparison of different modeling scenarios shows that a Gaussian CO2 emission distribution over the duration of the main activity phase of the CAMP fails in reproducing any of the geological observations, mainly the carbonate production crisis observed in the late Rhaetian sediments. Contrastingly, intense degassing peaks lead to successive decrease in carbonate production as observed in the geological record. For point (2), the perturbations of carbon cycle due to the degassing of CO2 with a mantellic carbon isotopic composition of −5‰ do not reproduce the intensity of the observed carbon isotope excursions. This was achieved in our model by assuming a mantellic carbon isotopic composition of −20‰. Even if this hypothesis requires further investigations, such low values may be associated to degassing of carbon from pools of light isotopic carbon located at the transition zone (Cartigny, 2010), possibly linked to setting of large igneous provinces (LIP's). Breakdown of biological primary productivity can also partially account for the sedimentary carbon isotope excursions and for the observed increase of atmospheric pCO2.


1992 ◽  
Vol 6 ◽  
pp. 163-163
Author(s):  
Fabien Kenig ◽  
Brian Popp ◽  
Roger Summons

To understand the processes controlling production, accumulation, and preservation of organic matter in the Lower Oxford Clay (LOC), we determined the hydrogen index (HI), the oxygen index (OI), the Tmax (from Rock-Eval), the content of total organic carbon (TOC), total carbon and total sulfur, and the carbon isotopic composition of bulk organic matter from 160 samples collected from 6 different quarries and one continuous core. With concentrations of TOC varying between 0.5% and 16.6%, the LOC is an organic-rich shale. For samples dominated by organic matter of phytoplanktonic origin, the hydrogen and oxygen indices and the Tmax (~418°) indicate low levels of maturity, and, thus, the shallow burial of the LOC through geologic time.Two main sources of organic matter can be distinguished: a major phytoplanktonic source with high HI and low OI and a minor terrestrial source with low HI and high OI. A third group, represented by samples with low HI and low OI, consists mainly of altered materials from the Middle Oxford Clay and the LOC. Selection of samples for chemical analysis was based on the macrofaunal assemblages defined by Duff (1975). These various biofacies are characterized by specific organic geochemical features indicating the relationship between conditions affecting faunal assemblages and those controlling accumulation and preservation of organic matter. For example, Duff's ‘deposit feeder shales', which are dominated by epifaunal bivalves and are depleted in infaunal organisms, exhibit the highest concentration and best preservation of marine organic matter, with an average TOC of 6.8% for 56 samples analyzed. The preservation of such organic matter requires a dysaerobic water column and a high sedimentation rate.Carbon isotopic compositions within the ‘deposit feeder shale’ biofacies (−27.6 to −23.2±) appear to have been controlled by the intensity of primary productivity. The highest-TOC, marine-dominated, 13C-rich samples reflect photosynthetic drawdown of dissolved-CO2 level, and, thus, originated in highly productive environments. On the other hand, variations in the carbon isotopic composition of organic matter in shell beds (−27.5 to −26±) probably reflect heterotrophic reworking of the organic matter, winnowing of the sediments, and mixing with a source of organic matter enriched in 13C, such as wood (δ13C from −25 to −23±). Such mixing phenomena may also explain the high variability of the carbon isotopic compositions of TOC-depleted and altered samples from the Middle and Upper Oxford Clay.The environment of deposition of the LOC would be characterized by the alternation of two major conditions: 1) periods of high productivity, dysoxic water column and high sedimentation rate leading to the development of organic-rich shales dominated by phytoplanktonic organic matter, and 2) periods of low productivity, oxic water column and high current activity implying winnowing and alteration of organic matter, and leading to the formation of shell beds where marine and terrestrial organic matter are mixed.


2015 ◽  
Vol 12 (10) ◽  
pp. 8085-8130 ◽  
Author(s):  
G. Saiz ◽  
M. Bird ◽  
C. Wurster ◽  
C. A. Quesada ◽  
P. Ascough ◽  
...  

Abstract. Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C / N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk δ13C and sand content explaining 0.63 of the observed variability. The variation of δ13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend being also strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times (τ) even deep in the soil, while the most stable SOM fraction associated to silt and clay exhibited shorter τ in the savanna woodland than in the neighbouring forest stand. These results together with the vertical variation observed in δ13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations. However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. This study shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM.


2015 ◽  
Vol 12 (16) ◽  
pp. 5041-5059 ◽  
Author(s):  
G. Saiz ◽  
M. Bird ◽  
C. Wurster ◽  
C. A. Quesada ◽  
P. Ascough ◽  
...  

Abstract. Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C / N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk δ13C and sand content explaining 0.63 of the observed variability. The variation of δ13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend also being strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise the confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times (τ) even in deep soil layers, while the most stable SOM fraction associated with silt and clay exhibited shorter τ in the savanna woodland than in the neighbouring forest stand. These results, together with the vertical variation observed in δ13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations. However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. This study shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM.


Sign in / Sign up

Export Citation Format

Share Document