scholarly journals Acoustic communication and the evolution of hearing in fishes

2000 ◽  
Vol 355 (1401) ◽  
pp. 1285-1288 ◽  
Author(s):  
Friedrich Ladich

Fishes have evolved a diversity of sound–generating organs and acoustic signals of various temporal and spectral content. Additionally, representatives of many teleost families such as otophysines, anabantoids, mormyrids and holocentrids possess accessory structures that enhance hearing abilities by acoustically coupling air–filled cavities to the inner ear. Contrary to the accessory hearing structures such as Weberian ossicles in otophysines and suprabranchial chambers in anabantoids, sonic organs do not occur in all members of these taxa. Comparison of audiograms among nine representatives of seven otophysan families from four orders revealed major differences in auditory sensitivity, especially at higher frequencies (> 1kHz) where thresholds differed by up to 50 dB. These differences showed no apparent correspondence to the ability to produce sounds (vocal versus non–vocal species) or to the spectral content of species–specific sounds. In anabantoids, the lowest auditory thresholds were found in the blue gourami Trichogaster trichopterus , a species not thought to be vocal. Dominant frequencies of sounds corresponded with optimal hearing bandwidth in two out of three vocalizing species. Based on these results, it is concluded that the selective pressures involved in the evolution of accessory hearing structures and in the design of vocal signals were other than those serving to optimize acoustic communication.

Paleobiology ◽  
2021 ◽  
pp. 1-21
Author(s):  
Mariana Viglino ◽  
Maximiliano Gaetán ◽  
Mónica R. Buono ◽  
R. Ewan Fordyce ◽  
Travis Park

Abstract The inner ear of the two higher clades of modern cetaceans (Neoceti) is highly adapted for hearing infrasonic (mysticetes) or ultrasonic (odontocetes) frequencies. Within odontocetes, Platanistoidea comprises a single extant riverine representative, Platanista gangetica, and a diversity of mainly extinct marine species from the late Oligocene onward. Recent studies drawing on features including the disparate tympanoperiotic have not yet provided a consensus phylogenetic hypothesis for platanistoids. Further, cochlear morphology and evolutionary patterns have never been reported. Here, we describe for the first time the inner ear morphology of late Oligocene–early Miocene extinct marine platanistoids and their evolutionary patterns. We initially hypothesized that extinct marine platanistoids lacked a specialized inner ear like P. gangetica and thus, their morphology and inferred hearing abilities were more similar to those of pelagic odontocetes. Our results reveal there is no “typical” platanistoid cochlear type, as the group displays a disparate range of cochlear anatomies, but all are consistent with high-frequency hearing. Stem odontocete Prosqualodon australis and platanistoid Otekaikea huata present a tympanal recess in their cochlea, of yet uncertain function in the hearing mechanism in cetaceans. The more basal morphology of Aondelphis talen indicates it had lower high-frequency hearing than other platanistoids. Finally, Platanista has the most derived cochlear morphology, adding to evidence that it is an outlier within the group and consistent with a >9-Myr-long separation from its sister genus Zarhachis. The evolution of a singular sound production morphology within Platanistidae may have facilitated the survival of Platanista to the present day.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam R. Fishbein ◽  
Nora H. Prior ◽  
Jane A. Brown ◽  
Gregory F. Ball ◽  
Robert J. Dooling

AbstractStudies of acoustic communication often focus on the categories and units of vocalizations, but subtle variation also occurs in how these signals are uttered. In human speech, it is not only phonemes and words that carry information but also the timbre, intonation, and stress of how speech sounds are delivered (often referred to as “paralinguistic content”). In non-human animals, variation across utterances of vocal signals also carries behaviorally relevant information across taxa. However, the discriminability of these cues has been rarely tested in a psychophysical paradigm. Here, we focus on acoustic communication in the zebra finch (Taeniopygia guttata), a songbird species in which the male produces a single stereotyped motif repeatedly in song bouts. These motif renditions, like the song repetitions of many birds, sound very similar to the casual human listener. In this study, we show that zebra finches can easily discriminate between the renditions, even at the level of single song syllables, much as humans can discriminate renditions of speech sounds. These results support the notion that sensitivity to fine acoustic details may be a primary channel of information in zebra finch song, as well as a shared, foundational property of vocal communication systems across species.


1998 ◽  
Vol 21 (2) ◽  
pp. 241-259 ◽  
Author(s):  
Harvey M. Sussman ◽  
David Fruchter ◽  
Jon Hilbert ◽  
Joseph Sirosh

Neuroethological investigations of mammalian and avian auditory systems have documented species-specific specializations for processing complex acoustic signals that could, if viewed in abstract terms, have an intriguing and striking relevance for human speech sound categorization and representation. Each species forms biologically relevant categories based on combinatorial analysis of information-bearing parameters within the complex input signal. This target article uses known neural models from the mustached bat and barn owl to develop, by analogy, a conceptualization of human processing of consonant plus vowel sequences that offers a partial solution to the noninvariance dilemma – the nontransparent relationship between the acoustic waveform and the phonetic segment. Critical input sound parameters used to establish species-specific categories in the mustached bat and barn owl exhibit high correlation and linearity due to physical laws. A cue long known to be relevant to the perception of stop place of articulation is the second formant (F2) transition. This article describes an empirical phenomenon – the locus equations – that describes the relationship between the F2 of a vowel and the F2 measured at the onset of a consonant-vowel (CV) transition. These variables, F2 onset and F2 vowel within a given place category, are consistently and robustly linearly correlated across diverse speakers and languages, and even under perturbation conditions as imposed by bite blocks. A functional role for this category-level extreme correlation and linearity (the “orderly output constraint”) is hypothesized based on the notion of an evolutionarily conserved auditory-processing strategy. High correlation and linearity between critical parameters in the speech signal that help to cue place of articulation categories might have evolved to satisfy a preadaptation by mammalian auditory systems for representing tightly correlated, linearly related components of acoustic signals.


2019 ◽  
Author(s):  
Ivan Andreevich Kerchev

Stridulatory signals are involved in conspecific interactions between bark beetles (Coleoptera: Curculionidae, Scolytinae). In this study, we compared the qualitative profiles of acoustic signals in three species from the genus Polygraphus Er. Sympatry can be periodically observed in two of them – P. proximus and P. subopacus. Sporadically they occur on the same plants. P. nigrielytris colonize distinctly different host plant species; however, on the island of Sakhalin it inhabits the same biotopes. The purpose of the study is to identify species-specific parameters and the extent of differences in stridulatory signals of these species. Airborne signals produced during the contact of males of the same species were experimentally recorded. Among tested parameters of stridulatory signals, as the most species-specific were noted: chirp duration, interchirp interval, number of tooth-strikes per chirp, and intertooth-strike interval.


2018 ◽  
Author(s):  
Ursula Kwong-Brown ◽  
Martha L. Tobias ◽  
Damian O. Elias ◽  
Ian C. Hall ◽  
Coen P.H. Elemans ◽  
...  

AbstractSpecies-specific vocal signals allow listeners to locate potential mates. During the tetrapod transition from water to land, lungs replaced gills, allowing expiration to drive sound production. Several groups, e.g. cetaceans and some frogs, then returned to water. Here we explore how air-driven sound production changed upon re-entry and how essential acoustic information on species identity was preserved in the secondarily aquatic frog Xenopus. We filmed movements of cartilage and muscles during evoked sound production in isolated larynges. Our results refute the current theory for Xenopus vocalization, cavitation, and instead favor sound production by mechanical excitation of laryngeal resonance modes following rapid separation of laryngeal arytenoid discs. The resulting frequency resonance modes (dyads) are intrinsic to the larynx rather than due to neuromuscular control. We show that dyads are a distinctive acoustic signature across species. While dyad component frequencies overlap across species, their ratio is shared within each Xenopus clade and thus provide information on species identity, potentially facilitating both conspecific localization and ancient species divergence.


2019 ◽  
Vol 20 (2) ◽  
pp. 362-374
Author(s):  
Yoichi Inoue ◽  
Waidi Sinun ◽  
Kazuo Okanoya

Abstract Mating activity of a wild Mueller’s gibbon group (Hylobates muelleri) was observed in the Danum Valley Conservation Area, Sabah, Malaysia. The purpose of this study was to investigate the function of copulation calls in gibbons. The female emitted copulation calls at the time of intromission and pelvic thrusting. Copulation calls were composed of two notes and one of them was sung only while mating. Approximately half of copulation calls were sung near the range boundary. Mating with copulation calls sometimes occurred while singing. According to the model that female copulation calls have evolved under the selective pressures of risk of infanticide and sperm competition, copulation calls should be rare in species with little female promiscuity. As gibbons usually live in pair-living social organization and have a monogamous mating system, no vocal signals by female gibbons are considered to be needed. However, clear copulation calls were emitted by the female. It suggests that the relationship between paired gibbons is unstable. Copulation calls by the female Mueller’s gibbon may function to increase mate guarding and strengthen the pair bond.


2019 ◽  
Vol 29 (13) ◽  
pp. 2190-2198.e3 ◽  
Author(s):  
Jonathan T. Perelmuter ◽  
Anthony B. Wilson ◽  
Joseph A. Sisneros ◽  
Paul M. Forlano

2008 ◽  
Vol 363 (1505) ◽  
pp. 2879-2889 ◽  
Author(s):  
Paula M den Hartog ◽  
Hans Slabbekoorn ◽  
Carel ten Cate

A core area of speciation research concerns the coevolution of species-specific signals and the selective sensitivity to such signals. Signals and responses to them should be tuned to each other, to be effective in intraspecific communication. Hybrid zones are ideal to study the presence of such ‘behavioural coupling’ and the mechanisms governing it, and this has rarely been done. Our study examines acoustic signals of males and their response to them in the context of territorial interactions in a natural hybrid zone between two dove species, Streptopelia vinacea and Streptopelia capicola . Male signals are important in hybrid zone dynamics as they are essential for territory establishment, which is crucial for successful reproduction. We tested whether the response of individual male hybrids is linked to how similar their own signal is to the playback signal. We did not find evidence for behavioural coupling. The combined evidence from the low level of response to hybrid and heterospecific signals outside the hybrid zone and a lack of coupling within the hybrid zone suggests that perceptual learning may explain our results. Learning to respond to locally abundant signals may be the best individual strategy and is likely to contribute to the maintenance of a hybrid zone.


Sign in / Sign up

Export Citation Format

Share Document