scholarly journals To concentrate or ventilate? Carbon acquisition, isotope discrimination and physiological ecology of early land plant life forms

2008 ◽  
Vol 363 (1504) ◽  
pp. 2767-2778 ◽  
Author(s):  
Moritz Meyer ◽  
Ulli Seibt ◽  
Howard Griffiths

A comparative study has been made of the photosynthetic physiological ecology and carbon isotope discrimination characteristics for modern-day bryophytes and closely related algal groups. Firstly, the extent of bryophyte distribution and diversification as compared with more advanced land plant groups is considered. Secondly, measurements of instantaneous carbon isotope discrimination ( Δ ), photosynthetic CO 2 assimilation and electron transport rates were compared during the drying cycles. The extent of surface diffusion limitation (when wetted), internal conductance and water use efficiency (WUE) at optimal tissue water content (TWC) were derived for liverworts and a hornwort from contrasting habitats and with differing degrees of thallus ventilation (as intra-thalline cavities and internal airspaces). We also explore how the operation of a biophysical carbon-concentrating mechanism (CCM) tempers isotope discrimination characteristics in two other hornworts, as well as the green algae Coleochaete orbicularis and Chlamydomonas reinhardtii . The magnitude of Δ was compared for each life form over a drying curve and used to derive the surface liquid-phase conductance (when wetted) and internal conductance (at optimal TWC). The magnitude of external and internal conductances, and WUE, was higher for ventilated, compared with non-ventilated, liverworts and hornworts, but the values were similar within each group, suggesting that both factors have been optimized for each life form. For the hornworts, leakiness of the CCM was highest for Megaceros vincentianus and C. orbicularis (approx. 30%) and, at 5%, lowest in C. reinhardtii grown under ambient CO 2 concentrations. Finally, evidence for the operation of a CCM in algae and hornworts is considered in terms of the probable role of the chloroplast pyrenoid, as the origins, structure and function of this enigmatic organelle are explored during the evolution of land plants.

2008 ◽  
Vol 35 (3) ◽  
pp. 201 ◽  
Author(s):  
Guillaume Tcherkez ◽  
Graham D. Farquhar

Internal conductance to carbon dioxide is a key aspect of leaf photosynthesis although is still not well understood. It is thought that it comprises two components, namely, a gas phase component (diffusion from intercellular spaces to cell walls) and a liquid phase component (dissolution, diffusion in water, hydration equilibrium). Here we use heavy water (D2O), which is known to slow down CO2 hydration by a factor of nearly three. Using 12C/13C stable isotope techniques and Xanthium strumarium L. leaves, we show that the on-line carbon isotope discrimination (Δ13C, or Δobs) associated with photosynthesis is not significantly decreased by heavy water, and that the internal conductance, estimated with relationships involving the deviation of Δ13C, decreased by 8–40% in 21% O2. It is concluded that in typical conditions, the CO2-hydration equilibrium does not exert an effect on CO2 assimilation larger than 9%. The carbon isotope discrimination associated with CO2 addition to ribulose-1,5,bisphosphate by Rubisco is slightly decreased by heavy water. This effect is proposed to originate from the use of solvent-derived proton/deuteron during the last step of the catalytic cycle of the enzyme (hydration/cleavage).


Sign in / Sign up

Export Citation Format

Share Document