scholarly journals The roles of time and ecology in the continental radiation of the Old World leaf warblers ( Phylloscopus and Seicercus )

2010 ◽  
Vol 365 (1547) ◽  
pp. 1749-1762 ◽  
Author(s):  
Trevor D. Price

Many continental sister species are allopatric or parapatric, ecologically similar and long separated, of the order of millions of years. Sympatric, ecologically differentiated, species, are often even older. This raises the question of whether build-up of sympatric diversity generally follows a slow process of divergence in allopatry, initially without much ecological change. I review patterns of speciation among birds belonging to the continental Eurasian Old World leaf warblers ( Phylloscopus and Seicercus ). I consider speciation to be a three-stage process (range expansions, barriers to gene flow, reproductive isolation) and ask how ecological factors at each stage have contributed to speciation, both among allopatric/parapatric sister species and among those lineages that eventually led to currently sympatric species. I suggest that time is probably the critical factor that leads to reproductive isolation between sympatric species and that a strong connection between ecological divergence and reproductive isolation remains to be established. Besides reproductive isolation, ecological factors can affect range expansions (e.g. habitat tracking) and the formation of barriers (e.g. treeless areas are effective barriers for warblers). Ecological factors may often limit speciation on continents because range expansions are difficult in ‘ecologically full’ environments.

2020 ◽  
Vol 287 (1924) ◽  
pp. 20200270
Author(s):  
Anna F. Feller ◽  
Marcel P. Haesler ◽  
Catherine L. Peichel ◽  
Ole Seehausen

One hallmark of the East African cichlid radiations is the rapid evolution of reproductive isolation that is robust to full sympatry of many closely related species. Theory predicts that species persistence and speciation in sympatry with gene flow are facilitated if loci of large effect or physical linkage (or pleiotropy) underlie traits involved in reproductive isolation. Here, we investigate the genetic architecture of a key trait involved in behavioural isolation, male nuptial coloration, by crossing two sister species pairs of Lake Victoria cichlids of the genus Pundamilia and mapping nuptial coloration in the F2 hybrids. One is a young sympatric species pair, representative of an axis of colour motif differentiation, red-dorsum versus blue, that is highly recurrent in closely related sympatric species. The other is a species pair representative of colour motifs, red-chest versus blue, that are common in allopatric but uncommon in sympatric closely related species. We find significant quantitative trait loci (QTLs) with moderate to large effects (some overlapping) for red and yellow in the sympatric red-dorsum × blue cross, whereas we find no significant QTLs in the non-sympatric red-chest × blue cross. These findings are consistent with theory predicting that large effect loci or linkage/pleiotropy underlying mating trait differentiation could facilitate speciation and species persistence with gene flow in sympatry.


2000 ◽  
Vol 132 (6) ◽  
pp. 877-887 ◽  
Author(s):  
B.S. Lindgren ◽  
S.E.R. Hoover ◽  
A.M. MacIsaac ◽  
C.I. Keeling ◽  
K.N. Slessor

AbstractThe effects of lineatin enantiomer ratios, lineatin release rate, and trap length on catches and the flight periods of three sympatric species of Trypodendron Stephens were investigated in field bioassays using multiple-funnel traps. The ambrosia beetle, Trypodendron betulae Swaine, was caught in similar numbers in baited traps and blank control traps, showing that this species does not respond to lineatin. Our results confirmed that Trypodendron lineatum (Olivier) is attracted only to (+)-lineatin. Trypodendron rufitarsus (Kirby) and Trypodendron retusum (LeConte) were shown to utilize lineatin and like T. lineatum were caught only when (+)-lineatin was present. These results indicate that lineatin does not govern reproductive isolation among these three species. There was no effect by (+)-lineatin release rate within the range tested. The flight of T. rufitarsus commenced earlier and ceased before the peak of the T. lineatum flight, suggesting that temporal separation may be an important component of reproductive isolation between these two species. The flight period of T. retusum was similar to that of T. lineatum. Host odours may aid in reproductive isolation of these two species. Enantiomer blend did not significantly affect sex ratio in any species; however, sex ratio differed among species, indicating that different species responded differently to the traps or that natural sex ratios differ. Catches of T. rufitarsus and T. retusum increased with trap length when pheromone release per trap was held constant and when release was held constant relative to trap length. Trap length and release rate did not affect sex ratio.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 367-382 ◽  
Author(s):  
H D Bradshaw ◽  
Kevin G Otto ◽  
Barbara E Frewen ◽  
John K McKay ◽  
Douglas W Schemske

Abstract Conspicuous differences in floral morphology are partly responsible for reproductive isolation between two sympatric species of monkeyflower because of their effect on visitation of the flowers by different pollinators. Mimulus lewisii flowers are visited primarily by bumblebees, whereas M. cardinalis flowers are visited mostly by hummingbirds. The genetic control of 12 morphological differences between the flowers of M. lewisii and M. cardinalis was explored in a large linkage mapping population of F2 plants (n = 465) to provide an accurate estimate of the number and magnitude of effect of quantitative trait loci (QTLs) governing each character. Between one and six QTLs were identified for each trait. Most (9/12) traits appear to be controlled in part by at least one major QTL explaining ≥25% of the total phenotypic variance. This implies that either single genes of individually large effect or linked clusters of genes with a large cumulative effect can play a role in the evolution of reproductive isolation and speciation.


2019 ◽  
Vol 128 (3) ◽  
pp. 583-591
Author(s):  
Leo Joseph ◽  
Alex Drew ◽  
Ian J Mason ◽  
Jeffrey L Peters

Abstract We reassessed whether two parapatric non-sister Australian honeyeater species (Aves: Meliphagidae), varied and mangrove honeyeaters (Gavicalis versicolor and G. fasciogularis, respectively), that diverged from a common ancestor c. 2.5 Mya intergrade in the Townsville area of north-eastern Queensland. Consistent with a previous specimen-based study, by using genomics methods we show one-way gene flow for autosomal but not Z-linked markers from varied into mangrove honeyeaters. Introgression barely extends south of the area of parapatry in and around the city of Townsville. While demonstrating the long-term porosity of species boundaries over several million years, our data also suggest a clear role of sex chromosomes in maintaining reproductive isolation.


1994 ◽  
Vol 6 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Heather I. Daly ◽  
Paul G. Rodhouse

Morphometric data were collected for 410 specimens of Pareledone turqueti and P. polymorpha caught around South Georgia. The two species differ in beak morphology and in the male hectocotylus. The species have similar appearances although there is a small but significant difference in the mantle length/body mass relationship for females, with P. polymorpha having a relatively longer mantle. There is no significant difference in the arm length/body mass relationship between species or sexes (p>0.05), except in the case of arm IV of females. There is an interspecific significant difference between sucker number on arms I and II of males, arms I–IV of females, and between hood length and mass of the buccal mass (p<0.05), with P. turqueti having relatively lower sucker numbers, a longer hood length and greater buccal mass mass. The beak of P. turqueti is similar to that of Eledone spp. but P. polymorpha has a small, fine beak with the rostral tip ending in an elongated, sharp point. Differences in beak and buccal mass suggest that these sympatric species occupy distinct trophic niches and that the differing morphology of the male hectocotylus is a factor in reproductive isolation.


2016 ◽  
Vol 29 (4) ◽  
pp. 777-789 ◽  
Author(s):  
K. Supriya ◽  
M. Rowe ◽  
T. Laskemoen ◽  
D. Mohan ◽  
T. D. Price ◽  
...  

Evolution ◽  
1979 ◽  
Vol 33 (2) ◽  
pp. 728 ◽  
Author(s):  
Michael M. Collins ◽  
Paul M. Tuskes

2019 ◽  
Vol 128 (1) ◽  
pp. 44-58 ◽  
Author(s):  
Katerina H Hora ◽  
František Marec ◽  
Peter Roessingh ◽  
Steph B J Menken

Abstract In evolutionarily young species and sympatric host races of phytophagous insects, postzygotic incompatibility is often not yet fully developed, but reduced fitness of hybrids is thought to facilitate further divergence. However, empirical evidence supporting this hypothesis is limited. To assess the role of reduced hybrid fitness, we studied meiosis and fertility in hybrids of two closely related small ermine moths, Yponomeuta padella and Yponomeuta cagnagella, and determined the extent of intrinsic postzygotic reproductive isolation. We found extensive rearrangements between the karyotypes of the two species and irregularities in meiotic chromosome pairing in their hybrids. The fertility of reciprocal F1 and, surprisingly, also of backcrosses with both parental species was not significantly decreased compared with intraspecific offspring. The results indicate that intrinsic postzygotic reproductive isolation between these closely related species is limited. We conclude that the observed chromosomal rearrangements are probably not the result of an accumulation of postzygotic incompatibilities preventing hybridization. Alternative explanations, such as adaptation to new host plants, are discussed.


Sign in / Sign up

Export Citation Format

Share Document