scholarly journals The energetics of organic synthesis inside and outside the cell

2013 ◽  
Vol 368 (1622) ◽  
pp. 20120255 ◽  
Author(s):  
Jan P. Amend ◽  
Douglas E. LaRowe ◽  
Thomas M. McCollom ◽  
Everett L. Shock

Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids.

2015 ◽  
Vol 112 (25) ◽  
pp. 7668-7672 ◽  
Author(s):  
Jill M. McDermott ◽  
Jeffrey S. Seewald ◽  
Christopher R. German ◽  
Sean P. Sylva

Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.


Elements ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 389-394
Author(s):  
Esther M. Schwarzenbach ◽  
Matthew Steele-MacInnis

Seawater interaction with the oceanic lithosphere crucially impacts on global geochemical cycles, controls ocean chemistry over geologic time, changes the petrophysical properties of the oceanic lithosphere, and regulates the global heat budget. Extensive seawater circulation is expressed near oceanic ridges by the venting of hydrothermal fluids through chimney structures. These vent fluids vary greatly in chemistry, from the metal-rich, acidic fluids that emanate from “black smokers” at temperatures up to 400 °C to the metal-poor, highly alkaline and reducing fluids that issue from the carbonate–brucite chimneys of ultramafic-hosted systems at temperatures below 110 °C. Mid-ocean ridge hydrothermal systems not only generate signifi-cant metal resources but also host unique life forms that may be similar to those of early Earth.


2021 ◽  
Vol 9 (12) ◽  
pp. 2475
Author(s):  
Guillaume Pillot ◽  
Oulfat Amin Ali ◽  
Sylvain Davidson ◽  
Laetitia Shintu ◽  
Yannick Combet-Blanc ◽  
...  

Recent studies have shown the presence of an abiotic electrical current across the walls of deep-sea hydrothermal chimneys, allowing the growth of electroautotrophic microbial communities. To understand the role of the different phylogenetic groups and metabolisms involved, this study focused on electrotrophic enrichment with nitrate as electron acceptor. The biofilm density, community composition, production of organic compounds, and electrical consumption were monitored by FISH confocal microscopy, qPCR, metabarcoding, NMR, and potentiostat measurements. A statistical analysis by PCA showed the correlation between the different parameters (qPCR, organic compounds, and electron acceptors) in three distinct temporal phases. In our conditions, the Archaeoglobales have been shown to play a key role in the development of the community as the first colonizers on the cathode and the first producers of organic compounds, which are then used as an organic source by heterotrophs. Finally, through subcultures of the community, we showed the development of a greater biodiversity over time. This observed phenomenon could explain the biodiversity development in hydrothermal contexts, where energy sources are transient and unstable.


Author(s):  
Guobing Yan ◽  
Kaiying Qiu ◽  
Ming Guo

The C-F bond is the strongest single bond in organic compounds. It is the most challenging task to study the activation of C-F bond in organic synthesis. Trifluoromethyl-containing compounds, which...


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 501
Author(s):  
Ptak-Kaczor Magdalena ◽  
Kwiecińska Klaudia ◽  
Korchowiec Jacek ◽  
Chłopaś Katarzyna ◽  
Banach Mateusz ◽  
...  

In the search for new carriers capable of transporting toxic drugs to a target, particular attention has been devoted to supramolecular systems with a ribbon-like micellar structure of which Congo red is an example. A special promise of the possible use of such systems for directing drugs to a target emerges from their particular affinity to immune complexes and as an independent property, binding many organic compounds including drugs by intercalation. Serum albumin also appeared able to bind micellar particles of such systems. It may protect them against dilution in transport. The mathematical tool, which relies on analysis of the distribution of polarity and hydrophobicity in protein molecules (fuzzy oil drop model), has been used to find the location of binding area in albumin as well as anchorage site for Congo red in heated IgG light chain used as a model presenting immunoglobulin-like structures. Results confirm the suggested formerly binding site of Congo red in V domain of IgG light chain and indicated the cleft between pseudo-symmetric domains of albumin as the area of attachment for the dye.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 539
Author(s):  
Benton C. Clark ◽  
Vera M. Kolb ◽  
Andrew Steele ◽  
Christopher H. House ◽  
Nina L. Lanza ◽  
...  

Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.


Author(s):  
Hsin-Fu Yeh ◽  
Hung-Hsiang Hsu

The Tatun Volcano Group (TVG) is located in northern Taiwan and consists of many springs and fumaroles. The Tayukeng (TYK) area is the most active fumarole site in the TVG. In this study, we analyzed the long-term geochemical variations of hydrothermal fluids and proposed a mechanism responsible for the variation in TYK. There are two different aquifers beneath the TYK area: a shallow SO42−-rich aquifer and a deeper aquifer rich in Cl−. TYK thermal water was mainly supplied by the shallow SO42−-rich aquifer; therefore, the thermal water showed high SO42− concentrations. After 2015, the inflow of deep thermal water increased, causing the Cl− concentrations of the TYK to increase. Notably, the inferred reservoir temperatures based on quartz geothermometry increased; however, the surface temperature of the spring decreased. We inferred that the enthalpy was lost during transportation to the surface. Therefore, the surface temperature of the spring does not increase with an increased inflow of deep hydrothermal fluid. The results can serve as a reference for understanding the complex evolution of the magma-hydrothermal system in the TVG.


2021 ◽  
pp. 120449
Author(s):  
Guang-Sin Lu ◽  
Douglas E. LaRowe ◽  
Jan P. Amend

Sign in / Sign up

Export Citation Format

Share Document