scholarly journals Joint phenotypes, evolutionary conflict and the fundamental theorem of natural selection

2014 ◽  
Vol 369 (1642) ◽  
pp. 20130423 ◽  
Author(s):  
David C. Queller

Multiple organisms can sometimes affect a common phenotype. For example, the portion of a leaf eaten by an insect is a joint phenotype of the plant and insect and the amount of food obtained by an offspring can be a joint trait with its mother. Here, I describe the evolution of joint phenotypes in quantitative genetic terms. A joint phenotype for multiple species evolves as the sum of additive genetic variances in each species, weighted by the selection on each species. Selective conflict between the interactants occurs when selection takes opposite signs on the joint phenotype. The mean fitness of a population changes not just through its own genetic variance but also through the genetic variance for its fitness that resides in other species, an update of Fisher's fundamental theorem of natural selection. Some similar results, using inclusive fitness, apply to within-species interactions. The models provide a framework for understanding evolutionary conflicts at all levels.

2018 ◽  
Vol 13 (3) ◽  
pp. 25 ◽  
Author(s):  
Alexander S. Bratus ◽  
Yuri S. Semenov ◽  
Artem S. Novozhilov

Sewall Wright’s adaptive landscape metaphor penetrates a significant part of evolutionary thinking. Supplemented with Fisher’s fundamental theorem of natural selection and Kimura’s maximum principle, it provides a unifying and intuitive representation of the evolutionary process under the influence of natural selection as the hill climbing on the surface of mean population fitness. On the other hand, it is also well known that for many more or less realistic mathematical models this picture is a severe misrepresentation of what actually occurs. Therefore, we are faced with two questions. First, it is important to identify the cases in which adaptive landscape metaphor actually holds exactly in the models, that is, to identify the conditions under which system’s dynamics coincides with the process of searching for a (local) fitness maximum. Second, even if the mean fitness is not maximized in the process of evolution, it is still important to understand the structure of the mean fitness manifold and see the implications of this structure on the system’s dynamics. Using as a basic model the classical replicator equation, in this note we attempt to answer these two questions and illustrate our results with simple well studied systems.


2017 ◽  
Vol 7 (5) ◽  
pp. 20170005 ◽  
Author(s):  
Andy Gardner

A central feature of Darwin's theory of natural selection is that it explains the purpose of biological adaptation. Here, I: emphasize the scientific importance of understanding what adaptations are for, in terms of facilitating the derivation of empirically testable predictions; discuss the population genetical basis for Darwin's theory of the purpose of adaptation, with reference to Fisher's ‘fundamental theorem of natural selection'; and show that a deeper understanding of the purpose of adaptation is achieved in the context of social evolution, with reference to inclusive fitness and superorganisms.


2018 ◽  
Author(s):  
David N. Fisher ◽  
Andrew G. McAdam

AbstractThere are many situations in nature where we expect traits to evolve but not necessarily for mean fitness to increase. However, these scenarios are hard to reconcile simultaneously with Fisher’s Fundamental Theorem of Natural Selection and the Price identity. The consideration of indirect genetic effects on fitness reconciles these fundamental theorems with the observation that traits sometimes evolve without any adaptation, by explicitly considering the correlated evolution of the social environment, which is a form of transmission bias. While transmission bias in the Price identity is often assumed to be absent, here we show that explicitly considering indirect genetic effects as a form of transmission bias for fitness has several benefits: 1) it makes clear how traits can evolve while mean fitness remains stationary, 2) it reconciles the fundamental theorem of natural selection with the evolution of maladaptation, 3) it explicitly includes density-dependent fitness through negative social effects that depend on the number of interacting conspecifics, and 4) its allows mean fitness to evolve even when direct genetic variance in fitness is zero, if related individuals interact and/or if there is multilevel selection. In summary, considering fitness in the context of indirect genetic effects aligns important theorems of natural selection with many situations observed in nature and provides a useful lens through which we might better understand evolution and adaptation.


2020 ◽  
Vol 37 (8) ◽  
pp. 2300-2308
Author(s):  
Li Liu ◽  
Yayu Wang ◽  
Di Zhang ◽  
Zhuoxin Chen ◽  
Xiaoshu Chen ◽  
...  

Abstract Fisher’s fundamental theorem of natural selection predicts no additive variance of fitness in a natural population. Consistently, studies in a variety of wild populations show virtually no narrow-sense heritability (h2) for traits important to fitness. However, counterexamples are occasionally reported, calling for a deeper understanding on the evolution of additive variance. In this study, we propose adaptive divergence followed by population admixture as a source of the additive genetic variance of evolutionarily important traits. We experimentally tested the hypothesis by examining a panel of ∼1,000 yeast segregants produced by a hybrid of two yeast strains that experienced adaptive divergence. We measured >400 yeast cell morphological traits and found a strong positive correlation between h2 and evolutionary importance. Because adaptive divergence followed by population admixture could happen constantly, particularly in species with wide geographic distribution and strong migratory capacity (e.g., humans), the finding reconciles the observation of abundant additive variances in evolutionarily important traits with Fisher’s fundamental theorem of natural selection. Importantly, the revealed role of positive selection in promoting rather than depleting additive variance suggests a simple explanation for why additive genetic variance can be dominant in a population despite the ubiquitous between-gene epistasis observed in functional assays.


2019 ◽  
Author(s):  
Li Liu ◽  
Yayu Wang ◽  
Di Zhang ◽  
Xiaoshu Chen ◽  
Zhijian Su ◽  
...  

AbstractFisher’s fundamental theorem of natural selection predicts no additive variance of fitness in a natural population. Consistently, observations in a variety of wild populations show virtually no narrow-sense heritability (h2) for traits important to fitness. However, counterexamples are occasionally reported, calling for a deeper understanding on the evolution of additive variance. In this study we propose adaptive divergence followed by population admixture as a source of the additive genetic variance of evolutionarily important traits. We experimentally tested the hypothesis by examining a panel of ~1,000 yeast segregants produced by a hybrid of two yeast strains that experienced adaptive divergence. We measured over 400 yeast cell morphological traits and found a strong positive correlation between h2 and evolutionary importance. Because adaptive divergence followed by population admixture could happen constantly, particularly in some species such as humans, the finding reconciles the observation of abundant additive variances in evolutionarily important traits with Fisher’s fundamental theorem of natural selection. It also suggests natural selection may effectively promote rather than suppress additive genetic variance in species with wide geographic distribution and strong migratory capacity.


Genetics ◽  
1987 ◽  
Vol 117 (3) ◽  
pp. 583-585
Author(s):  
Alan Hastings

ABSTRACT It is shown that the mean phenotype monotonically approaches the optimum in a class of symmetric, two-locus, two-allele models with stabilizing selection. In this model, mean fitness does not change monotonically. Thus, Fisher's fundamental theorem does not hold, even though another quantity of evolutionary interest, the mean phenotype, can be shown to change monotonically. Using this quantity, it is proven that global stability results for this model.


Author(s):  
Bruce Walsh ◽  
Michael Lynch

This chapter reviews a number of “theorems” of natural selection. These include exact results (true mathematical theorems): the Robertson-Price identity, Price's general expression for any form of selection response, and the Fisher-Price-Ewens version of Fisher's fundamental theorem. Their generality comes as the cost of usually being very difficult to apply. An important exception is the Robertson-Price identity, which expresses the within-generation change in the mean of a trait as its covariance with relative fitness. This chapter also examines three classic approximations: Fisher's fundamental theorem for the behavior of mean population fitness, and Robertson's secondary theorem and the breeder's equation for the expected response in a trait under selection, showing both how these results are connected and the error given by the various approximations. Finally, the chapter examines the connection between the additive variance of a trait and its correlation with fitness.


Genetics ◽  
1974 ◽  
Vol 77 (3) ◽  
pp. 569-589
Author(s):  
Martin L Tracey ◽  
Francisco J Ayala

ABSTRACT Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 to 60% of the structural genes are polymorphic in natural populations of many vertebrate and invertebrate species. Some authors have argued that a substantial proportion of these polymorphisms cannot be maintained by natural selection because this would result in an unbearable genetic load. If many polymorphisms are maintained by heterotic natural selection, individuals with much greater than average proportion of homozygous loci should have very low fitness. We have measured in Drosophila melanogaster the fitness of flies homozygous for a complete chromosome relative to normal wild flies. A total of 37 chromosomes from a natural population have been tested using 92 experimental populations. The mean fitness of homozygous flies is 0.12 for second chromosomes, and 0.13 for third chromosomes. These estimates are compatible with the hypothesis that many (more than one thousand) loci are maintained by heterotic selection in natural populations of D. melanogaster.


2011 ◽  
Author(s):  
Philip J. Gerrish ◽  
Paul D. Sniegowski ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document