indirect genetic effects
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 38)

H-INDEX

29
(FIVE YEARS 2)

Evolution ◽  
2022 ◽  
Author(s):  
Stephen P. De Lisle ◽  
Daniel I. Bolnick ◽  
Edmund D. Brodie ◽  
Allen J. Moore ◽  
Joel W. McGlothlin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elda Dervishi ◽  
Inonge Reimert ◽  
Lisette E. van der Zande ◽  
Pramod Mathur ◽  
Egbert F. Knol ◽  
...  

AbstractIncluding Indirect Genetic Effects (IGE) in breeding programs to reduce aggression in group housed animals has been proposed. However, the effect of selection for IGE for growth on animal metabolism and physiology is unknown. The purpose of this study was twofold: (1) To investigate the effects of this new breeding method along with two housing (barren and straw), coping style (high and low resisters) and sex (female and castrated males) options on the metabolome profile of pigs. (2) To identify and map biological processes associated with a regrouping test at 9 weeks of age. We used Nuclear Magnetic Resonance to quantify 49 serum metabolites at week 8, 9 and 22. Also, we quantified 3 catecholamines (tyramine, epinephrine, phenylethylamine) and serotonin and three water soluble vitamins (B2, B5 and B7). Overall, no significant differences were observed between negative and positive IGE animals. The magnitude of change (delta) of many metabolites as a response to the regrouping test was significantly affected by IGE, especially that of the amino acids (P < 0.05), being greater in positive IGE pigs. The regrouping test was associated with alteration in glycine, serine and threonine metabolism. In conclusion positive and negative IGE animals respond differently to the regrouping test.


2021 ◽  
pp. 1-11
Author(s):  
Jonathan D. Schaefer ◽  
Seon-Kyeong Jang ◽  
D. Angus Clark ◽  
Joseph D. Deak ◽  
Brian M. Hicks ◽  
...  

Abstract Background Recent well-powered genome-wide association studies have enhanced prediction of substance use outcomes via polygenic scores (PGSs). Here, we test (1) whether these scores contribute to prediction over-and-above family history, (2) the extent to which PGS prediction reflects inherited genetic variation v. demography (population stratification and assortative mating) and indirect genetic effects of parents (genetic nurture), and (3) whether PGS prediction is mediated by behavioral disinhibition prior to substance use onset. Methods PGSs for alcohol, cannabis, and nicotine use/use disorder were calculated for Minnesota Twin Family Study participants (N = 2483, 1565 monozygotic/918 dizygotic). Twins' parents were assessed for histories of substance use disorder. Twins were assessed for behavioral disinhibition at age 11 and substance use from ages 14 to 24. PGS prediction of substance use was examined using linear mixed-effects, within-twin pair, and structural equation models. Results Nearly all PGS measures were associated with multiple types of substance use independently of family history. However, most within-pair PGS prediction estimates were substantially smaller than the corresponding between-pair estimates, suggesting that prediction is driven in part by demography and indirect genetic effects of parents. Path analyses indicated the effects of both PGSs and family history on substance use were mediated via disinhibition in preadolescence. Conclusions PGSs capturing risk of substance use and use disorder can be combined with family history measures to augment prediction of substance use outcomes. Results highlight indirect sources of genetic associations and preadolescent elevations in behavioral disinhibition as two routes through which these scores may relate to substance use.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicole M. Warrington ◽  
Liang-Dar Hwang ◽  
Michel G. Nivard ◽  
David M. Evans

AbstractEstimation of direct and indirect (i.e. parental and/or sibling) genetic effects on phenotypes is becoming increasingly important. We compare several multivariate methods that utilize summary results statistics from genome-wide association studies to determine how well they estimate direct and indirect genetic effects. Using data from the UK Biobank, we contrast point estimates and standard errors at individual loci compared to those obtained using individual level data. We show that Genomic structural equation modelling (SEM) outperforms the other methods in accurately estimating conditional genetic effects and their standard errors. We apply Genomic SEM to fertility data in the UK Biobank and partition the genetic effect into female and male fertility and a sibling specific effect. We identify a novel locus for fertility and genetic correlations between fertility and educational attainment, risk taking behaviour, autism and subjective well-being. We recommend Genomic SEM be used to partition genetic effects into direct and indirect components when using summary results from genome-wide association studies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Amelie Baud ◽  
Francesco Paolo Casale ◽  
Amanda M. Barkley-Levenson ◽  
Nilgoun Farhadi ◽  
Charlotte Montillot ◽  
...  

Abstract Background The phenotype of an individual can be affected not only by the individual’s own genotypes, known as direct genetic effects (DGE), but also by genotypes of interacting partners, indirect genetic effects (IGE). IGE have been detected using polygenic models in multiple species, including laboratory mice and humans. However, the underlying mechanisms remain largely unknown. Genome-wide association studies of IGE (igeGWAS) can point to IGE genes, but have not yet been applied to non-familial IGE arising from “peers” and affecting biomedical phenotypes. In addition, the extent to which igeGWAS will identify loci not identified by dgeGWAS remains an open question. Finally, findings from igeGWAS have not been confirmed by experimental manipulation. Results We leverage a dataset of 170 behavioral, physiological, and morphological phenotypes measured in 1812 genetically heterogeneous laboratory mice to study IGE arising between same-sex, adult, unrelated mice housed in the same cage. We develop and apply methods for igeGWAS in this context and identify 24 significant IGE loci for 17 phenotypes (FDR < 10%). We observe no overlap between IGE loci and DGE loci for the same phenotype, which is consistent with the moderate genetic correlations between DGE and IGE for the same phenotype estimated using polygenic models. Finally, we fine-map seven significant IGE loci to individual genes and find supportive evidence in an experiment with a knockout model that Epha4 gives rise to IGE on stress-coping strategy and wound healing. Conclusions Our results demonstrate the potential for igeGWAS to identify IGE genes and shed light into the mechanisms of peer influence.


2021 ◽  
Author(s):  
Laurence J Howe ◽  
Ben Brumpton ◽  
Humaira Rasheed ◽  
Bjorn Olav Asvold ◽  
Cristen J Willer ◽  
...  

Taller people have lower risk of coronary heart disease but higher risk of many cancers. Mendelian randomization studies in unrelated individuals have suggested that these relationships are potentially causal. However, Mendelian randomization estimates from samples of unrelated individuals are sensitive to demography (population stratification, assortative mating) and familial (indirect genetic) effects. Height could influence disease risk via anatomic and physiological effects of height (e.g., number of cells or the bore of arteries) or previous results may have been confounded by early-life environmental factors (e.g., parental socioeconomic position and nutrition). In this study, we performed within-sibship Mendelian randomization analyses using 77,757 siblings, a design robust against demography and indirect genetic effects of parents. Within-sibship Mendelian randomization estimated that one SD taller height lowers odds of coronary heart disease by 14% (95% CI: 3% to 23%) but increases odds of cancer by 18% (95% CI: 3% to 34%). There was some evidence that taller height reduces systolic blood pressure and LDL cholesterol, which may mediate some of the protective effect of taller height on coronary heart disease risk. For the first time, we have demonstrated that purported effects of height on adulthood disease risk are unlikely to be explained by demographic or familial factors, and so likely reflect an individual-level causal effect. Disentangling the mechanisms via which height affects disease risk may improve understanding of the aetiologies of atherosclerosis and carcinogenesis.


2021 ◽  
Vol 118 (25) ◽  
pp. e2023184118
Author(s):  
Yuchang Wu ◽  
Xiaoyuan Zhong ◽  
Yunong Lin ◽  
Zijie Zhao ◽  
Jiawen Chen ◽  
...  

Marginal effect estimates in genome-wide association studies (GWAS) are mixtures of direct and indirect genetic effects. Existing methods to dissect these effects require family-based, individual-level genetic, and phenotypic data with large samples, which is difficult to obtain in practice. Here, we propose a statistical framework to estimate direct and indirect genetic effects using summary statistics from GWAS conducted on own and offspring phenotypes. Applied to birth weight, our method showed nearly identical results with those obtained using individual-level data. We also decomposed direct and indirect genetic effects of educational attainment (EA), which showed distinct patterns of genetic correlations with 45 complex traits. The known genetic correlations between EA and higher height, lower body mass index, less-active smoking behavior, and better health outcomes were mostly explained by the indirect genetic component of EA. In contrast, the consistently identified genetic correlation of autism spectrum disorder (ASD) with higher EA resides in the direct genetic component. A polygenic transmission disequilibrium test showed a significant overtransmission of the direct component of EA from healthy parents to ASD probands. Taken together, we demonstrate that traditional GWAS approaches, in conjunction with offspring phenotypic data collection in existing cohorts, could greatly benefit studies on genetic nurture and shed important light on the interpretation of genetic associations for human complex traits.


2021 ◽  
Author(s):  
Samuel Alexander Purkiss ◽  
Mouhammad Shadi Khudr ◽  
Oscar Enrique Aguinaga ◽  
Reinmar Hager

Host-parasite interactions represent complex co-evolving systems in which genetic variation within a species can significantly affect selective pressure on traits in the other (for example via inter-species indirect genetic effects). While often viewed as a two-species interaction between host and parasite species, some systems are more complex due to the involvement of symbionts in the host that influence its immunity, enemies of the host, and the parasite through intraguild predation. However, it remains unclear what the joint effects of intraguild predation, defensive endosymbiosis, within-species genetic variation and indirect genetic effects on host immunity are. We have addressed this question in an important agricultural pest system, the pea aphid Acyrthosiphon pisum, which shows significant intraspecific variability in immunity to the parasitoid wasp Aphidius ervi due to immunity conferring endosymbiotic bacteria. In a complex experiment involving a quantitative genetic design of the parasitoid, two ecologically different aphid lineages and the aphid lion Chrysoperla carnea as an intraguild predator, we demonstrate that aphid immunity is affected by intraspecific genetic variation in the parasitoid and the aphid, as well as by associated differences in the defensive endosymbiont communities. Using 16s rRNA sequencing, we identified secondary symbionts that differed between the lineages. We further show that aphid lineages differ in their altruistic behaviour once parasitised whereby infested aphids move away from the clonal colony to facilitate predation. The outcome of these complex between-species interactions not only shape important host-parasite systems but have also implications for understanding the evolution of multitrophic interactions, and aphid biocontrol.


2021 ◽  
Author(s):  
Stephen P. De Lisle ◽  
Daniel I. Bolnick ◽  
Edmund D. Brodie ◽  
Allen J. Moore ◽  
Joel W. McGlothlin

AbstractCoevolution occurs when species interact to influence one another’s fitness, resulting in reciprocal evolutionary change. In many coevolving lineages, trait expression in one species is modified by the genotypes and phenotypes of the other, forming feedback loops reminiscent of models of intraspecific social evolution. Here, we adapt the theory of within-species social evolution, characterized by indirect genetic effects and social selection imposed by interacting individuals, to the case of interspecific interactions. In a trait-based model, we derive general expressions for multivariate evolutionary change in two species and the expected between-species covariance in evolutionary change across a selection mosaic. We show that reciprocal interspecific indirect genetic effects can dominate the coevolutionary process and drive patterns of correlated evolution beyond what is expected from direct selection alone. In extreme cases, interspecific indirect genetic effects can lead to coevolution when selection does not covary between species or even when one species lacks genetic variance. Moreover, our model indicates that interspecific indirect genetic effects may interact in complex ways with cross-species selection to determine the course of coevolution. Importantly, our model makes empirically testable predictions for how different forms of reciprocal interactions contribute to the coevolutionary process and influence the geographic mosaic of coevolution.


2021 ◽  
Author(s):  
Joel W McGlothlin ◽  
Erol Akcay ◽  
Edmund D Brodie ◽  
Allen J Moore ◽  
Jeremy Van Cleve

Two popular approaches for modeling social evolution, evolutionary game theory and quantitative genetics, ask complementary questions but are rarely integrated. Game theory focuses on evolutionary outcomes, with models solving for evolutionarily stable equilibria, whereas quantitative genetics provides insight into evolutionary processes, with models predicting short-term responses to selection. Here we draw parallels between evolutionary game theory and interacting phenotypes theory, which is a quantitative genetic framework for understanding social evolution. First, we show how any evolutionary game may be translated into two quantitative genetic selection gradients, nonsocial and social selection, which may be used to predict evolutionary change from a single round of the game. We show that synergistic fitness effects may alter predicted selection gradients, causing changes in magnitude and sign as the population mean evolves. Second, we show how evolutionary games involving plastic behavioral responses to partners can be modeled using indirect genetic effects, which describe how trait expression changes in response to genes in the social environment. We demonstrate that repeated social interactions in models of reciprocity generate indirect effects and conversely, that estimates of parameters from indirect genetic effect models may be used to predict the evolution of reciprocity. We argue that a pluralistic view incorporating both theoretical approaches will benefit empiricists and theorists studying social evolution. We advocate the measurement of social selection and indirect genetic effects in natural populations to test the predictions from game theory, and in turn, the use of game theory models to aid in the interpretation of quantitative genetic estimates.


Sign in / Sign up

Export Citation Format

Share Document