scholarly journals GENETIC LOAD IN NATURAL POPULATIONS: IS IT COMPATIBLE WITH THE HYPOTHESIS THAT MANY POLYMORPHISMS ARE MAINTAINED BY NATURAL SELECTION?

Genetics ◽  
1974 ◽  
Vol 77 (3) ◽  
pp. 569-589
Author(s):  
Martin L Tracey ◽  
Francisco J Ayala

ABSTRACT Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 to 60% of the structural genes are polymorphic in natural populations of many vertebrate and invertebrate species. Some authors have argued that a substantial proportion of these polymorphisms cannot be maintained by natural selection because this would result in an unbearable genetic load. If many polymorphisms are maintained by heterotic natural selection, individuals with much greater than average proportion of homozygous loci should have very low fitness. We have measured in Drosophila melanogaster the fitness of flies homozygous for a complete chromosome relative to normal wild flies. A total of 37 chromosomes from a natural population have been tested using 92 experimental populations. The mean fitness of homozygous flies is 0.12 for second chromosomes, and 0.13 for third chromosomes. These estimates are compatible with the hypothesis that many (more than one thousand) loci are maintained by heterotic selection in natural populations of D. melanogaster.

Genetics ◽  
1982 ◽  
Vol 102 (3) ◽  
pp. 485-502
Author(s):  
Robert D Seager ◽  
Francisco J Ayala ◽  
R William Marks

ABSTRACT In a large experiment, using nearly 200 population cages, we have measured the fitness of Drosophila melanogaster homozygous (1) for the second chromosome, (2) for the third chromosome, and (3) for both chromosomes. Twentyfour second chromosomes and 24 third chromosomes sampled from a natural population were tested. The mean fitness of the homozygous flies is 0.081 ± 0.014 for the second chromosome, 0.080 ± 0.017 for the third chromosome, and 0.079 ± 0.024 for both chromosomes simultaneously. Assuming that fitnesses are multiplicative (the additive fitness model makes no sense in the present case because of the large selection coefficients involved), the expected mean fitness of the homozygotes for both chromosomes is 0.0066; their observed fitness is more than ten times greater. Thus, it appears that synergistic interactions between loci are considerable; and that, consequently, the fitness function substantially departs from linearity. Two models are tentatively suggested for the fitness function: a "threshold" model and a "synergistic" model.—The experiments reported here confirm previous results showing that the concealed genetic load present in natural populations of Drosophila is sufficient to account for the selective maintenance of numerous polymorphisms (of the order of 1000).


2018 ◽  
Vol 13 (3) ◽  
pp. 25 ◽  
Author(s):  
Alexander S. Bratus ◽  
Yuri S. Semenov ◽  
Artem S. Novozhilov

Sewall Wright’s adaptive landscape metaphor penetrates a significant part of evolutionary thinking. Supplemented with Fisher’s fundamental theorem of natural selection and Kimura’s maximum principle, it provides a unifying and intuitive representation of the evolutionary process under the influence of natural selection as the hill climbing on the surface of mean population fitness. On the other hand, it is also well known that for many more or less realistic mathematical models this picture is a severe misrepresentation of what actually occurs. Therefore, we are faced with two questions. First, it is important to identify the cases in which adaptive landscape metaphor actually holds exactly in the models, that is, to identify the conditions under which system’s dynamics coincides with the process of searching for a (local) fitness maximum. Second, even if the mean fitness is not maximized in the process of evolution, it is still important to understand the structure of the mean fitness manifold and see the implications of this structure on the system’s dynamics. Using as a basic model the classical replicator equation, in this note we attempt to answer these two questions and illustrate our results with simple well studied systems.


Genetics ◽  
1976 ◽  
Vol 83 (3) ◽  
pp. 601-607
Author(s):  
W J Ewens

ABSTRACT The so-called "Fundamental Theorem of Natural Selection", that the mean fitness of a population increases with time under natural selection, is known not to be true, as a mathematical theorem, when fitnesses depend on more than one locus. Although this observation may not have particular biological relevance, (so that mean fitness may well increase in the great majority of interesting situations), it does suggest that it is of interest to find an evolutionary result which is correct as a mathematical theorem, no matter how many loci are involved. The aim of the present note is to prove an evolutionary theorem relating to the variance in fitness, rather than the mean: this theorem is true for an arbitrary number of loci, as well as for arbitrary (fixed) fitness parameters and arbitrary linkage between loci. Connections are briefly discussed between this theorem and the principle of quasi-linkage equilibrium.


Genetics ◽  
1981 ◽  
Vol 97 (3-4) ◽  
pp. 719-730
Author(s):  
John G Brittnacher

ABSTRACT The genetic variation and genetic load due to virility, the male reproductive component of fitness, was measured in Drosophila melanogaster and D. pseudoobscura using males homozygous and heterozygous for the second chromosome of each species. Virility was determined in a female-choice, male mating competition experiment where both mating propensity and fertility were taken into account.——The mean virility of the homozygous D. melanogaster males relative to the heterozygous males was 0.50; the relative mean virility of the quasinormal homozygotes was 0.56. The mean virility of the homozygous D. pseudoobscura males relative to the heterozygous males was 0.70; the relative mean virility of the nonsterile homozygotes was 0.72, and of the quasinormal homozygotes, 0.68.——Depending on the species and chromosome sampled, fertile homozygous males had a mean virility 15 to 50% lower than the mean viability of individuals homozygous for a chromosome with quasinormal viability. The genetic load due to virility was also greater than that due to the female reproductive component. This higher level of hidden genetic variation (or genetic load) indicates that the results of PROUT(1971a, b) and BUNDGAARD and CHRISTIANSEN(1972), where the virility component of fitness dominated the dynamics of an artificial polymorphism, may be more general and that virility may dominate the dynamics of natural polymorphisms as well.


Genetics ◽  
1984 ◽  
Vol 108 (1) ◽  
pp. 213-221 ◽  
Author(s):  
Tsuneyuki Yamazaki ◽  
Yasuko Hirose

ABSTRACT Fifty lethal-free, sterility-free isogenic lines of Drosophila melanogaster that were randomly sampled from a natural population were tested for net fitness and other components of fitness by competition with D. hydei. Larval viability and developmental time were also measured using the balanced marker method. Distribution patterns of these fitness components were similar, but correlation between the fitness components varied depending on the combinations used. The highest correlations were obtained between net fitness and productivity (rp = 0.6987, rg = 0.9269). The correlation between net fitness and total larval viability was much lower (rp = 0.1473 and rg = 0.2171). These results indicate that measuring net fitness, not just a component of fitness, is necessary for the good understanding of the genetic structures of natural populations.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 791-802
Author(s):  
J A Coyne ◽  
S Aulard ◽  
A Berry

Abstract In(2LR)PL is a large pericentric inversion polymorphic in populations of Drosophila melanogaster on two Indian Ocean islands. This polymorphism is puzzling: because crossing over in female heterokaryotypes produces inviable zygotes, such inversions are thought to be underdominant and should be quickly eliminated from populations. The observed fixation for such inversions among related species has led to the idea that genetic drift can cause chromosome evolution in opposition to natural selection. We found, however, that In(2LR)PL is not underdominant for fertility, as heterokaryotypic females produce perfectly viable eggs. Genetic analysis shows that the lack of underdominance results from the nearly complete absence of crossing over in the inverted region. This phenomenon is probably caused by mechanical and not genetic factors, because crossing over is not suppressed in In(2LR)PL homokaryotypes. Our observations do not support the idea that the fixation of pericentric inversions among closely related species implies the action of genetic drift overcoming strong natural selection in very small populations. If chromosome arrangements vary in their underdominance, it is those with the least disadvantage as heterozygotes, like In(2LR)PL, that will be polymorphic or fixed in natural populations.


2019 ◽  
Vol 116 (27) ◽  
pp. 13440-13445 ◽  
Author(s):  
Scott M. Villa ◽  
Juan C. Altuna ◽  
James S. Ruff ◽  
Andrew B. Beach ◽  
Lane I. Mulvey ◽  
...  

Ecological speciation occurs when local adaptation generates reproductive isolation as a by-product of natural selection. Although ecological speciation is a fundamental source of diversification, the mechanistic link between natural selection and reproductive isolation remains poorly understood, especially in natural populations. Here, we show that experimental evolution of parasite body size over 4 y (approximately 60 generations) leads to reproductive isolation in natural populations of feather lice on birds. When lice are transferred to pigeons of different sizes, they rapidly evolve differences in body size that are correlated with host size. These differences in size trigger mechanical mating isolation between lice that are locally adapted to the different sized hosts. Size differences among lice also influence the outcome of competition between males for access to females. Thus, body size directly mediates reproductive isolation through its influence on both intersexual compatibility and intrasexual competition. Our results confirm that divergent natural selection acting on a single phenotypic trait can cause reproductive isolation to emerge from a single natural population in real time.


1978 ◽  
Vol 32 (3) ◽  
pp. 215-229 ◽  
Author(s):  
Charles H. Langley ◽  
Diana B. Smith ◽  
F. M. Johnson

SUMMARYLinkage disequilibria between pairs of 8 polymorphic enzyme loci (αGpdh, Mdh, Adh, Est-6, Pgm, Odh, Est-C and Acph) in some 100 natural population samples of Drosophila melanogaster were examined. The estimates of linkage disequilibrium were made from zygotic frequencies. The magnitude of linkage disequilibria are small and similar to those in previous reports. Variation in linkage disequilibrium among related subpopulations was analysed by analysis of variance of the correlation coefficients. Despite the small absolute value of linkage disequilibrium there is a suggestion of a correlation among related subpopulations. The magnitude of linkage disequilibrium was observed to be positively correlated with linkage. Two cage populations were observed to demonstrate large amounts of linkage disequilibrium between closely linked loci in contrast to the situation in natural populations. This is attributable to the finite sizes of these cage populations.


Sign in / Sign up

Export Citation Format

Share Document