scholarly journals Exploring the evolutionary history of centrosomes

2014 ◽  
Vol 369 (1650) ◽  
pp. 20130453 ◽  
Author(s):  
Juliette Azimzadeh

The centrosome is the main organizer of the microtubule cytoskeleton in animals, higher fungi and several other eukaryotic lineages. Centrosomes are usually located at the centre of cell in tight association with the nuclear envelope and duplicate at each cell cycle. Despite a great structural diversity between the different types of centrosomes, they are functionally equivalent and share at least some of their molecular components. In this paper, we explore the evolutionary origin of the different centrosomes, in an attempt to understand whether they are derived from an ancestral centrosome or evolved independently from the motile apparatus of distinct flagellated ancestors. We then discuss the evolution of centrosome structure and function within the animal lineage.

2020 ◽  
Author(s):  
Ailton G Rodrigues-Junior ◽  
Carol C Baskin ◽  
Jerry M Baskin ◽  
Orlando C De-Paula

Abstract Background A structure called the pleurogram makes up a large part of the seed coat of some species in subfamilies Caesalpinioideae and Mimosoideae of Fabaceae, but little is known about its function. It has been hypothesized that this structure acts as a hygroscopic valve during the maturation drying of seeds. However, a new hypothesis has recently emerged that proposes a distinct function for the pleurogram. Scope Here, we provide an overview of the structure and function of the pleurogram, which is diverse and complex. This large structure can be dislodged, thereby creating a pathway for water entry into water-impermeable seeds. However, the pleurogram is non-functional as a pathway of water into the seed of some species. Thus, the evolutionary history of species with a pleurogram may be related to a loss/gain in its function. A complete model for the function of the pleurogram is proposed. Conclusions The pleurogram may act on several stages of the seed, from maturation to germination. As a hygroscopic valve, it regulates dehydration of the seed during maturation. As a pathway for water entry into the seed, the pleurogram acts as a water gap in seeds with physical dormancy, thereby regulating dormancy break/germination. The occurrence of a pleurogram in several genera of legumes and Cucurbitaceae is confirmed. Single or multiple pleurograms can serve as (the) point(s) of water entry into seeds that do not otherwise have a hilar water gap.


2021 ◽  
Author(s):  
Fang Zhou ◽  
Chang Su ◽  
Shuqi Xu ◽  
Linyuan Lü

Abstract In real-world networks, there usually exist a small set of nodes that play an important role in the structure and function of networks. Those vital nodes can influence most other nodes in the network via a spreading process. While most of the existing works focused on vital nodes that can maximize the spreading size in the final stage, which we call final influencers, recent work proposed the idea of fast influencers, which emphasizes nodes’ spreading capacity at the early stage. Despite the recent surge of efforts in identifying these two types of influencers in networks, there remained limited research on untangling the differences between fast influencers and final influencers. In this paper, we first distinguish the two types of influencers: fast-only influencers and final-only influencers. The former is defined as individuals who can achieve a high spreading effect at the early stage but lose their superiority in the final stage, and the latter are those individuals that fail to exhibit a prominent spreading performance at the early stage but influence a large fraction of nodes at the final stage. Further experiments based on eight empirical datasets, we reveal the key differences between the two types of influencers concerning their spreading capacity and the local structures. We also analyze how network degree assortativity influences the fraction of the proposed two types of influencers. The results demonstrate that with the increase of degree assortativity, the fraction of the fast-only influencers decreases, which indicates that more fast influencers tend to keep their superiority at the final stage. Our study provides insights into the differences and evolution of different types of influencers and has important implications for various empirical applications, such as advertisement marketing, and epidemic suppressing.


Genome ◽  
2011 ◽  
Vol 54 (12) ◽  
pp. 986-992 ◽  
Author(s):  
Huan Wang ◽  
Dongfa Sun ◽  
Genlou Sun

The phylogeny of diploid Hordeum species has been studied using both chloroplast and nuclear gene sequences. However, the studies of different nuclear datasets of Hordeum species often arrived at similar conclusions, whereas the studies of different chloroplast DNA data generally resulted in inconsistent conclusions. Although the monophyly of the genus is well supported by both morphological and molecular data, the intrageneric phylogeny is still a matter of controversy. To better understand the evolutionary history of Hordeum species, two chloroplast gene loci (trnD-trnT intergenic spacer and rps16 gene) and one nuclear marker (thioreoxin-like gene (HTL)) were used to explore the phylogeny of Hordeum species. Two obviously different types of trnD-trnT sequences were observed, with an approximately 210 base pair difference between these two types: one for American species, another for Eurasian species. The trnD-trnT data generally separated the diploid Hordeum species into Eurasian and American clades, with the exception of Hordeum marinum subsp. gussoneanum. The rps16 data also grouped most American species together and suggested that Hordeum flexuosum has a different plastid type from the remaining American species. The nuclear gene HTL data clearly divided Hordeum species into two clades: the Xu + H genome clade and the Xa + I genome clade. Within clades, H genome species were well separated from the Xu species, and the I genome species were well separated from the Xa genome species. The incongruence between chloroplast and nuclear datasets was found and discussed.


1995 ◽  
Vol 7 (4) ◽  
pp. 847 ◽  
Author(s):  
C Gagnon

With very few exceptions, the basic structure of the 9+2 axoneme has been well preserved over a very long period of evolution from protozoa to mammais. This stability indicates that the basic structural components of the axoneme visible by electron microscopy, as well as most of the other unidentified components, have withstood the passage of time. It also means that components of the 9+2 axoneme have sufficient diversity in function to accommodate the various types of motility patterns encountered in different species of flagella. Several of the 200 polypeptides that constitute the axoneme have been identified as components of the dynein arms, radial spokes etc. but many more remain to be identified and their function(s) remain to be determined. Because this review deals with the regulation of flagellar movement at the axonemal level, it does not include regulation of flagella by extracellular factors unless these factors have a direct action on axonemal components. In this context, it is very important firstly to understand the structural components of the axoneme and how they influence and regulate axonemal movement. Different primitive organisms are mentioned in this review since major breakthroughs in our understanding of how an axoneme generates different types of movement have been made through their study. Despite some variations in structure and function of axonemal components, the basic mechanisms involved in the regulation of flagella from Chlamydomonas or sea urchin spermatozoa should also apply to the more evolved mammalian species, including human spermatozoa.


2017 ◽  
Author(s):  
Charley J. Hubbard ◽  
Marcus T. Brock ◽  
Linda T.A. van Diepen ◽  
Loïs Maignien ◽  
Brent E. Ewers ◽  
...  

AbstractPlants alter chemical and physical properties of soil, and thereby influence rhizosphere microbial community structure. The structure of microbial communities may in turn affect plant performance. Yet, outside of simple systems with pairwise interacting partners, the plant genetic pathways that influence microbial community structure remain largely unknown, as are the performance feedbacks of microbial communities selected by the host plant genotype. We investigated the role of the plant circadian clock in shaping rhizosphere community structure and function. We performed 16S rRNA gene sequencing to characterize rhizosphere bacterial communities of Arabidopsis thaliana between day and night time points, and tested for differences in community structure between wild-type (Ws) vs. clock mutant (toc1-21, ztl-30) genotypes. We then characterized microbial community function, by growing wild-type plants in soils with an overstory history of Ws, toc1-21 or ztl-30 and measuring plant performance. We observed that rhizosphere community structure varied between day and night time points, and clock misfunction significantly altered rhizosphere communities. Finally, wild-type plants germinated earlier and were larger when inoculated with soils having an overstory history of wild-type in comparison to clock mutant genotypes. Our findings suggest the circadian clock of the plant host influences rhizosphere community structure and function.


2000 ◽  
Vol 129 (2-3) ◽  
pp. 324-334 ◽  
Author(s):  
Robert D. Moir ◽  
Timothy P. Spann ◽  
Reynold I. Lopez-Soler ◽  
Miri Yoon ◽  
Anne E. Goldman ◽  
...  

2013 ◽  
Vol 19 ◽  
pp. 115-156 ◽  
Author(s):  
Pincelli M. Hull ◽  
Simon A. F. Darroch

Mass extinctions shape the history of life and can be used to inform understanding of the current biodiversity crisis. In this paper, a general introduction is provided to the methods used to investigate the ecosystem effects of mass extinctions (Part I) and to explore major patterns and outstanding research questions in the field (Part II). The five largest mass extinctions of the Phanerozoic had profoundly different effects on the structure and function of ecosystems, although the causes of these differences are currently unclear. Outstanding questions and knowledge gaps are identified that need to be addressed if the fossil record is to be used as a means of informing the dynamics of future biodiversity loss and ecosystem change.


Author(s):  
Madeleine Keehner ◽  
Peter Khooshabeh ◽  
Mary Hegarty

This chapter examines human factors associated with using interactive three-dimensional (3D) visualizations. Virtual representations of anatomical structure and function, often with sophisticated user control capabilities, are growing in popularity in medicine for education, training, and simulation. This chapter reviews the cognitive science literature and introduces issues such as theoretical ideas related to using interactive visualizations, different types and levels of interactivity, effects of different kinds of control interfaces, and potential cognitive benefits of these tools. The authors raise the question of whether all individuals are equally capable of using 3D visualizations effectively, focusing particularly on two variables: (1) individual differences in spatial abilities, and (2) individual differences in interactive behavior. The chapter draws together findings from the authors’ own studies and from the wider literature, exploring recent insights into how individual differences among users can impact the effectiveness of different types of external visualizations for different kinds of tasks. The chapter offers recommendations for design, such as providing transparent affordances to support users’ meta-cognitive understanding, and employing personalization to complement the capabilities of different individuals. Finally, the authors suggest future directions and approaches for research, including the use of methodology such as needs analysis and contextual enquiry to better understand the cognitive processes and capacities of different kinds of users.


Sign in / Sign up

Export Citation Format

Share Document