scholarly journals Vocal learning in songbirds: the role of syllable order in song recognition

Author(s):  
Carien Mol ◽  
Johan J. Bolhuis ◽  
Sanne Moorman

Songbird vocal learning has interesting behavioural and neural parallels with speech acquisition in human infants. Zebra finch males sing one unique song that they imitate from conspecific males, and both sexes learn to recognize their father's song. Although males copy the stereotyped syllable sequence of their father's song, the role of sequential information in recognition remains unclear. Here, we investigated father's song recognition after changing the serial order of syllables (switching the middle syllables, first and last syllables, or playing all syllables in inverse order). Behavioural approach and call responses of adult male and female zebra finches to their father's versus unfamiliar songs in playback tests demonstrated significant recognition of father's song with all syllable-order manipulations. We then measured behavioural responses to normal versus inversed-order father's song. In line with our first results, the subjects did not differentiate between the two. Interestingly, when males' strength of song learning was taken into account, we found a significant correlation between song imitation scores and the approach responses to the father's song. These findings suggest that syllable sequence is not essential for recognition of father's song in zebra finches, but that it does affect responsiveness of males in proportion to the strength of vocal learning. This article is part of the theme issue ‘Vocal learning in animals and humans’.

2017 ◽  
Vol 284 (1859) ◽  
pp. 20171114 ◽  
Author(s):  
Nicole M. Baran ◽  
Samantha C. Peck ◽  
Tabitha H. Kim ◽  
Michael H. Goldstein ◽  
Elizabeth Adkins-Regan

Vocal learning from social partners is crucial for the successful development of communication in a wide range of species. Social interactions organize attention and enhance motivation to learn species-typical behaviour. However, the neurobiological mechanisms connecting social motivation and vocal learning are unknown. Using zebra finches ( Taeniopygia guttata ), a ubiquitous model for vocal learning, we show that manipulations of nonapeptide hormones in the vasopressin family (arginine vasotocin, AVT) early in development can promote or disrupt both song and social motivation. Young male zebra finches, like human infants, are socially gregarious and require interactive feedback from adult tutors to learn mature vocal forms. To investigate the role of social motivational mechanisms in song learning, in two studies, we injected hatchling males with AVT or Manning compound (MC, a nonapeptide receptor antagonist) on days 2–8 post-hatching and recorded song at maturity. In both studies, MC males produced a worse match to tutor song than controls. In study 2, which experimentally controlled for tutor and genetic factors, AVT males also learned song significantly better compared with controls. Furthermore, song similarity correlated with several measures of social motivation throughout development. These findings provide the first evidence that nonapeptides are critical to the development of vocal learning.


2017 ◽  
Author(s):  
Ludivine Pidoux ◽  
Pascale Leblanc ◽  
Arthur Leblois

AbstractSpeech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ludivine Pidoux ◽  
Pascale Le Blanc ◽  
Carole Levenes ◽  
Arthur Leblois

Speech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.


2021 ◽  
Author(s):  
Judith M. Varkevisser ◽  
Ralph Simon ◽  
Ezequiel Mendoza ◽  
Martin How ◽  
Idse van Hijlkema ◽  
...  

AbstractBird song and human speech are learned early in life and for both cases engagement with live social tutors generally leads to better learning outcomes than passive audio-only exposure. Real-world tutor–tutee relations are normally not uni- but multimodal and observations suggest that visual cues related to sound production might enhance vocal learning. We tested this hypothesis by pairing appropriate, colour-realistic, high frame-rate videos of a singing adult male zebra finch tutor with song playbacks and presenting these stimuli to juvenile zebra finches (Taeniopygia guttata). Juveniles exposed to song playbacks combined with video presentation of a singing bird approached the stimulus more often and spent more time close to it than juveniles exposed to audio playback only or audio playback combined with pixelated and time-reversed videos. However, higher engagement with the realistic audio–visual stimuli was not predictive of better song learning. Thus, although multimodality increased stimulus engagement and biologically relevant video content was more salient than colour and movement equivalent videos, the higher engagement with the realistic audio–visual stimuli did not lead to enhanced vocal learning. Whether the lack of three-dimensionality of a video tutor and/or the lack of meaningful social interaction make them less suitable for facilitating song learning than audio–visual exposure to a live tutor remains to be tested.


2021 ◽  
Author(s):  
Carlos A. Rodriguez-Saltos ◽  
Aditya Bhise ◽  
Prasanna Karur ◽  
Ramsha Nabihah Khan ◽  
Sumin Lee ◽  
...  

In songbirds, learning to sing is a highly social process that likely involves social reward. Here, we hypothesized that the degree to which a juvenile songbird learns a song depends on the degree to which it finds that song rewarding to hear during vocal development. We tested this hypothesis by measuring song preferences in young birds during song learning and then analyzing their adult songs. Song preferences were measured in an operant key-pressing assay. Juvenile male zebra finches (Taeniopygia guttata) had access to two keys, each of which was associated with a higher likelihood of playing the song of their father or that of another familiar adult ("neighbor"). To minimize the effects of exposure on learning, we implemented a reinforcement schedule that allowed us to detect preferences while balancing exposure to each song. On average, the juveniles significantly preferred the father's song early during song learning, before they were themselves singing. At around post-hatch day 60, their preference shifted to the neighbor's song. At the end of the song learning period, we recorded the juveniles' songs and compared them to the father's and the neighbor's song. All of the birds copied father's song. The accuracy with which the father's song was imitated was positively correlated with the peak strength of the preference for the father's song during the sensitive period. Our results show that preference for a social stimulus, in this case a vocalization, predicted social learning during development.


Behaviour ◽  
1996 ◽  
Vol 133 (1-2) ◽  
pp. 103-115 ◽  
Author(s):  
A.E. Jones ◽  
P.J.B. Slater

AbstractYoung male zebra finches (Taeniopygia guttata) normally copy their song from one tutor when given a choice of two. Interaction is known to be a key feature of the learning process and this study examines the way in which one particular type of social behaviour, aggression, may affect tutor choice. Female raised zebra finches were given a choice of two song tutors, which had been pre-selected for differing levels of aggression, during the sensitive phase for song learning. A young bird was significantly more likely to learn from the tutor that was more aggressive to him, as found earlier by Clayton (1987). In addition, behavioural observations suggest that aggression towards the young bird was the cause rather than an effect of tutor choice. There was no significant relationship between the relative level of tutor aggression and the amount of his song copied. Changes in the level of aggression over the tutoring period are also discussed.


2017 ◽  
Vol 284 (1861) ◽  
pp. 20170988 ◽  
Author(s):  
Constantina Theofanopoulou ◽  
Cedric Boeckx ◽  
Erich D. Jarvis

Language acquisition in humans and song learning in songbirds naturally happen as a social learning experience, providing an excellent opportunity to reveal social motivation and reward mechanisms that boost sensorimotor learning. Our knowledge about the molecules and circuits that control these social mechanisms for vocal learning and language is limited. Here we propose a hypothesis of a role for oxytocin (OT) in the social motivation and evolution of vocal learning and language. Building upon existing evidence, we suggest specific neural pathways and mechanisms through which OT might modulate vocal learning circuits in specific developmental stages.


2020 ◽  
Author(s):  
Ha Na Choe ◽  
Jeevan Tewari ◽  
Kevin W. Zhu ◽  
Matthew Davenport ◽  
Hiroaki Matsunami ◽  
...  

AbstractSex hormones alter the organization of the brain during early development and coordinate various behaviors throughout life. In zebra finches, song learning is limited to males, and the associated song learning brain pathway only matures in males and atrophies in females. This atrophy can be reversed by giving females exogenous estrogen during early post-hatch development, but whether normal male song system development requires estrogen is uncertain. For the first time in songbirds, we administered exemestane, a potent third generation estrogen synthesis inhibitor, from the day of hatching until adulthood. We examined the behavior, brain, and transcriptome of individual song nuclei of these pharmacologically manipulated animals. We found that males with long-term exemestane treatment had diminished male-specific plumage, impaired song learning, but retained normal song nuclei sizes and most, but not all, of their specialized transcriptome. Consistent with prior findings, females with long-term estrogen treatment retained a functional song system, and we further observed their song nuclei had specialized gene expression profiles similar, but not identical to males. We also observed that different song nuclei responded to estrogen manipulation differently, with Area X in the striatum being the most altered by estrogen modulation. These findings support the hypothesis that song learning is an ancestral trait in both sexes, which was subsequently suppressed in females of some species, and that estrogen has come to play a critical role in modulating this suppression as well as refinement of song learning.


Sign in / Sign up

Export Citation Format

Share Document