scholarly journals A Double-helical Structure for Re-aggregated Protein of Narcissus Mosaic Virus

1975 ◽  
Vol 29 (3) ◽  
pp. 325-330 ◽  
Author(s):  
D. J. Robinson ◽  
A. Hutcheson ◽  
P. Tollin ◽  
H. R. Wilson
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oleksandr Shyshov ◽  
Shyamkumar Vadakket Haridas ◽  
Luca Pesce ◽  
Haoyuan Qi ◽  
Andrea Gardin ◽  
...  

AbstractThe development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.


2002 ◽  
Vol 83 (1) ◽  
pp. 382-406 ◽  
Author(s):  
Lihua Wang ◽  
Brian E. Hingerty ◽  
A.R. Srinivasan ◽  
Wilma K. Olson ◽  
Suse Broyde

2011 ◽  
pp. 51-84 ◽  
Author(s):  
Richard A. Stein

The 1953 discovery of the DNA double-helical structure by James Watson, Francis Crick, Maurice Wilkins, and Rosalind Franklin, represented one of the most significant advances in the biomedical world (Watson and Crick 1953; Maddox 2003). Almost half a century after this landmark event, in February 2001, the initial draft sequences of the human genome were published (Lander et al., 2001; Venter et al., 2001) and, in April 2003, the International Human Genome Sequencing Consortium reported the completion of the Human Genome Project, a massive international collaborative endeavor that started in 1990 and is thought to represent the most ambitious undertaking in the history of biology (Collins et al., 2003; Thangadurai, 2004; National Human Genome Research Institute). The Human Genome Project provided a plethora of genetic and genomic information that significantly changed our perspectives on biomedical and social sciences. The sequencing of the first human genome was a 13-year, 2.7-billion-dollar effort that relied on the automated Sanger (dideoxy or chain termination) method, which was developed in 1977, around the same time as the Maxam-Gilbert (chemical) sequencing, and subsequently became the most frequently used approach for several decades (Sanger et al., 1975; Maxam & Gilbert, 1977; Sanger et al., 1977). The new generations of DNA sequencing technologies, known as next-generation (second generation) and next-next-generation (third generation) sequencing, which started to be commercialized in 2005, enabled the cost-effective sequencing of large chromosomal regions during progressively shorter time frames, and opened the possibility for new applications, such as the sequencing of single-cell genomes (Service, 2006; Blow, 2008; Morozova and Marra, 2008; Metzker, 2010).


1970 ◽  
Vol 33 (5-6) ◽  
pp. 550-553 ◽  
Author(s):  
H.R. Wilson ◽  
P. Tollin

2002 ◽  
Vol 10 (03) ◽  
pp. 233-241 ◽  
Author(s):  
SU-LONG NYEO ◽  
I-CHING YANG ◽  
CHI-HAO WU

The power spectra of the nucleotides in the coding and noncoding sequences of the complete genomes of twenty-two archaea and bacteria are obtained. According to the intensities at the periodicity of 3 bp in the spectra, it is observed that the genomic sequences may be classified into three types. Moreover, the spectra generally have a small but broad peak in the 10–11 bp periodicities. For the archaea, the peak is seen to locate preferably at about 10 bp periodicity, while for the bacteria, it tends to locate at about 11 bp. These features suggest that the DNA sequences of archaea generally have a tighter double helical structure than those of bacteria in order to cope with harsh environmental conditions. Besides, among the archaea, A. Pernixi K1 is found to have the largest periodicity of about 11 bp, but has a comparatively high CG content in its genome and hence a high denaturation temperature.


1973 ◽  
Vol 18 (2) ◽  
pp. 181-187 ◽  
Author(s):  
H. R. Wilson ◽  
P. Tollin ◽  
A. Rahman

2002 ◽  
Vol 83 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Ewan W. Blanch ◽  
David J. Robinson ◽  
Lutz Hecht ◽  
Christopher D. Syme ◽  
Kurt Nielsen ◽  
...  

Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar to that of tobacco mosaic virus (TMV) studied previously, being dominated by signals characteristic of proteins with helix bundle folds. In particular, PVX and NMV show strong positive ROA bands at ∼1340 cm−1 assigned to hydrated α-helix and perhaps originating in surface exposed helical residues, together with less strong positive ROA intensity in the range ∼1297–1312 cm−1 assigned to α-helix in a more hydrophobic environment and perhaps originating in residues at helix–helix interfaces. The positive ∼1340 cm−1 ROA band of TMV is less intense than those of PVX and NMV, suggesting that TMV contains less hydrated α-helix. Small differences in other spectral regions reflect differences in some loop, turn and side-chain compositions and conformations among the three viruses. A pattern recognition program based on principal component analysis of ROA spectra indicates that the coat protein subunit folds of PVX and NMV may be very similar to each other and similar to that of TMV. These results suggest that PVX and NMV may have coat protein subunit structures based on folds similar to the TMV helix bundle and hence that the helical architecture of the PVX and NMV particles may be similar to that of TMV but with different structural parameters.


Sign in / Sign up

Export Citation Format

Share Document