scholarly journals Naturally Occurring Temperature-sensitive Influenza A Viruses of the H1N1 and H3N2 Subtypes

1980 ◽  
Vol 48 (2) ◽  
pp. 383-389 ◽  
Author(s):  
J. S. Oxford ◽  
T. Corcoran ◽  
G. C. Schild
1982 ◽  
Vol 41 (2) ◽  
pp. 353-359 ◽  
Author(s):  
C M Chu ◽  
S F Tian ◽  
G F Ren ◽  
Y M Zhang ◽  
L X Zhang ◽  
...  

2005 ◽  
Vol 86 (10) ◽  
pp. 2817-2821 ◽  
Author(s):  
Ana M. Falcón ◽  
Ana Fernandez-Sesma ◽  
Yurie Nakaya ◽  
Thomas M. Moran ◽  
Juan Ortín ◽  
...  

It was previously shown that two mutant influenza A viruses expressing C-terminally truncated forms of the NS1 protein (NS1-81 and NS1-110) were temperature sensitive in vitro. These viruses contain HA, NA and M genes derived from influenza A/WSN/33 H1N1 virus (mouse-adapted), and the remaining five genes from human influenza A/Victoria/3/75 virus. Mice intranasally infected with the NS1 mutant viruses showed undetectable levels of virus in lungs at day 3, whereas those infected with the NS1 wild-type control virus still had detectable levels of virus at this time. Nevertheless, the temperature-sensitive mutant viruses induced specific cellular and humoral immune responses similar to those induced by the wild-type virus. Mice immunized with the NS1 mutant viruses were protected against a lethal challenge with influenza A/WSN/33 virus. These results indicate that truncations in the NS1 protein resulting in temperature-sensitive phenotypes in vitro correlate with attenuation in vivo without compromising viral immunogenicity, an ideal characteristic for live attenuated viral vaccines.


2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Aitor Nogales ◽  
Luis Martinez-Sobrido ◽  
David J. Topham ◽  
Marta L. DeDiego

ABSTRACT Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus surveillance to identify new mutations in the NS1 protein affecting the pathogenicity of the circulating viruses is highly important. In this work, we evaluated amino acid variability in the NS1 proteins from H3N2 human seasonal viruses and the effect of the mutations on innate immune responses and virus pathogenesis. NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, and recombinant viruses harboring these mutations were attenuated in a mouse model of influenza infection. Interestingly, a virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive phenotype, further attenuating the virus in vivo.


1980 ◽  
Vol 28 (3) ◽  
pp. 753-761
Author(s):  
A S Beare ◽  
A P Kendal ◽  
N J Cox ◽  
C Scholtissek

A series of trials was conducted in which wild-type A/USSR/90/77 (H1N1) influenza A virus and a few of its antigenic variants were inoculated into volunteers. Infections readily occurred in people of all ages who had initial low antibody titers, but clinical effects were generally mild in comparison with those of the previously tested subtypes, H0N1, H1N1, H2N2, H3N2. There was, however, an inverse relationship between severity of symptoms and age of volunteers, although the incidence of virus excretion and of increase in anti-hemagglutinin was apparently not age related. Naturally occurring recombinant viruses with H3 hemagglutinin and one or more genes of A/USSR/098/77-like strains were likewise studied in volunteers. These clones also produced mild symptoms, providing evidence of an attenuating effect on H3N2 viruses by the substitution of some of its genes with the genes of an H1N1 virus.


2019 ◽  
Author(s):  
Griffin D. Haas ◽  
Alfred T. Harding ◽  
Nicholas S. Heaton

AbstractInfluenza A viruses (IAVs) encode their genome as eight negative sense RNA segments. During viral assembly, the failure to package all eight segments, or packaging of a mutated segment, renders the resultant virion incompletely infectious. It is known that the accumulation of these defective particles can limit viral disease by interfering with the spread of fully infectious particles. In order to harness this phenomenon therapeutically, we defined which viral packaging signals were amenable to duplication and developed a viral genetic platform which allowed the production of replication competent IAVs that package up to two additional artificial genome segments for a total of 10 segments. These artificial genome segments are capable of acting as “decoy” segments that, when packaged by wild-type (WT) viruses, lead to the production of non-infectious viral particles. Despite 10-segmented viruses being able to replicate and spreadin vivo, these genomic modifications render the viruses avirulent. Excitingly, administration of 10-segmented viruses, both prophylactically and therapeutically, was able to rescue animals from normally lethally influenza virus infections. Thus, 10-segmented influenza viruses represent a potent anti-influenza biological therapy that targets the strain-independent process of viral assembly to slow the kinetics of productive viral spread and therefore limit viral disease.Author SummarySeasonal influenza infections are best prevented using vaccination. Vaccination, however, is not capable of completely preventing influenza infection, necessitating the use of anti-influenza therapeutics. To date, several different classes of anti-influenza therapeutics have been developed and used in order to combat these infections. Unfortunately, the incidence of influenza resistance to many of these therapeutics has begun to rise, necessitating the development of new strategies. One such strategy is to mimic the activity of naturally occurring viral particles that harbor defective genomes. These defective interfering particles have the ability to interfere with productive viral assembly, preventing the spread of influenza viruses across the respiratory tract. Furthermore, given the manner in which they target influenza segment packaging, a conserved feature of all influenza A viruses, resistance to this therapeutic strategy is unlikely. Here, we report the development of a genetic platform that allows the production of replication competent, 10-segmented influenza viruses. These viruses are capable of amplifying themselves in isolation, but co-infection with a wild-type virus leads to segment exchange and compromises the spread of both viruses. This interference, while mechanistically distinct from naturally occurring defective particles, was able to target the same viral process and rescue animals exposed to an otherwise lethal viral infection. This viral-based approach may represent a cost effective and scalable method to generate effective anti-influenza therapeutics when vaccines or anti-viral drugs become ineffective due to acquisition of viral resistance mutations.


2017 ◽  
Vol 91 (17) ◽  
Author(s):  
Aitor Nogales ◽  
Laura Rodriguez ◽  
Marta L. DeDiego ◽  
David J. Topham ◽  
Luis Martínez-Sobrido

ABSTRACT Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics, representing a serious public health concern. It has been described that one mechanism used by some IAV strains to escape the host innate immune responses and modulate virus pathogenicity involves the ability of the PA-X and NS1 proteins to inhibit the host protein synthesis in infected cells. It was reported that for the 2009 pandemic H1N1 IAV (pH1N1) only the PA-X protein had this inhibiting capability, while the NS1 protein did not. In this work, we have evaluated, for the first time, the combined effect of PA-X- and NS1-mediated inhibition of general gene expression on virus pathogenesis, using a temperature-sensitive, live-attenuated 2009 pandemic H1N1 IAV (pH1N1 LAIV). We found that viruses containing PA-X and NS1 proteins that simultaneously have (PAWT +/NS1MUT +) or do not have (PAMUT −/NS1WT −) the ability to block host gene expression showed reduced pathogenicity in vivo. However, a virus where the ability to inhibit host protein expression was switched between PA-X and NS1 (PAMUT −/NS1MUT +) presented pathogenicity similar to that of a virus containing both wild-type proteins (PAWT +/NS1WT −). Our findings suggest that inhibition of host protein expression is subject to a strict balance, which can determine the successful progression of IAV infection. Importantly, knowledge obtained from our studies could be used for the development of new and more effective vaccine approaches against IAV. IMPORTANCE Influenza A viruses (IAVs) are one of the most common causes of respiratory infections in humans, resulting in thousands of deaths annually. Furthermore, IAVs can cause unpredictable pandemics of great consequence when viruses not previously circulating in humans are introduced into humans. The defense machinery provided by the host innate immune system limits IAV replication; however, to counteract host antiviral activities, IAVs have developed different inhibition mechanisms, including prevention of host gene expression mediated by the viral PA-X and NS1 proteins. Here, we provide evidence demonstrating that optimal control of host protein synthesis by IAV PA-X and/or NS1 proteins is required for efficient IAV replication in the host. Moreover, we demonstrate the feasibility of genetically controlling the ability of IAV PA-X and NS1 proteins to inhibit host immune responses, providing an approach to develop more effective vaccines to combat disease caused by this important respiratory pathogen.


1999 ◽  
Vol 73 (9) ◽  
pp. 7349-7356 ◽  
Author(s):  
Liz Medcalf ◽  
Emma Poole ◽  
Debra Elton ◽  
Paul Digard

ABSTRACT The negative-sense segmented RNA genome of influenza virus is transcribed into capped and polyadenylated mRNAs, as well as full-length replicative intermediates (cRNAs). The mechanism that regulates the two forms of transcription remains unclear, although several lines of evidence imply a role for the viral nucleoprotein (NP). In particular, temperature-shift and biochemical analyses of the temperature-sensitive viruses A/WSN/33ts56 and A/FPV/Rostock/34/Giessen tsG81 containing point mutations within the NP coding region have indicated specific defects in replicative transcription at the nonpermissive temperature. To identify the functional defect, we introduced the relevant mutations into the NP of influenza virus strain A/PR/8/34. Both mutants were temperature sensitive for influenza virus gene expression in transient-transfection experiments but localized and accumulated normally in transfected cells. Similarly, the mutants retained the ability to self-associate and interact with the virus polymerase complex whether synthesized at the permissive or the nonpermissive temperatures. In contrast, the mutant NPs were defective for RNA binding when expressed at the nonpermissive temperature but not when expressed at 30°C. This suggests that the RNA-binding activity of NP is required for replicative transcription.


Sign in / Sign up

Export Citation Format

Share Document