scholarly journals Molecular Characterization of Sorghum Chlorotic Spot Virus, a Proposed Furovirus

1988 ◽  
Vol 69 (9) ◽  
pp. 2335-2345 ◽  
Author(s):  
T. L. Kendall ◽  
W. G. Langenberg ◽  
S. A. Lommel
Plant Disease ◽  
2018 ◽  
Vol 102 (8) ◽  
pp. 1588-1598 ◽  
Author(s):  
C. Chabi-Jesus ◽  
P. L. Ramos-González ◽  
A. D. Tassi ◽  
O. Guerra-Peraza ◽  
E. W. Kitajima ◽  
...  

Local chlorotic spots resembling early lesions characteristic of citrus leprosis (CL) were observed in leaves of two sweet orange (Citrus sinensis L.) trees in Teresina, State of Piauí, Brazil, in early 2017. However, despite the similarities, these spots were generally larger than those of a typical CL and showed rare or no necrosis symptoms. In symptomatic tissues, transmission electron microscopy revealed the presence of viroplasms in the nuclei of the infected parenchymal cells and rod-shaped particles with an average size of approximately 40 × 100 nm, resembling those typically observed during infection by dichorhaviruses. A bipartite genome of the putative novel virus, tentatively named citrus chlorotic spot virus (CiCSV) (RNA1 = 6,518 nucleotides [nt] and RNA2 = 5,987 nt), revealed the highest nucleotide sequence identity values with the dichorhaviruses coffee ringspot virus strain Lavras (73.8%), citrus leprosis virus N strain Ibi1 (58.6%), and orchid fleck virus strain So (56.9%). In addition to citrus, CiCSV was also found in local chlorotic lesions on leaves of the ornamental plant beach hibiscus (Talipariti tiliaceum (L.) Fryxell). Morphological characterization of mites recovered from the infected plants revealed at least two different types of Brevipalpus. One of them corresponds to Brevipalpus yothersi. The other is slightly different from B. yothersi mites but comprises traits that possibly place it as another species. A mix of the two mite types collected on beach hibiscus successfully transmitted CiCSV to arabidopsis plants but additional work is required to verify whether both types of flat mite may act as viral vectors. The current study reveals a newly described dichorhavirus associated with a citrus disease in the northeastern region of Brazil.


2011 ◽  
Vol 61 (1) ◽  
pp. 183-194 ◽  
Author(s):  
T.-C. Chen ◽  
J.-T. Li ◽  
Y.-P. Lin ◽  
Y.-C. Yeh ◽  
Y.-C. Kang ◽  
...  

2007 ◽  
Vol 42 (9) ◽  
pp. 1335-1343 ◽  
Author(s):  
Renata Faier Calegario ◽  
Sávio de Siqueira Ferreira ◽  
Eduardo Chumbinho de Andrade ◽  
Francisco Murilo Zerbini

The objective of this work was the biological and molecular characterization of a begomovirus detected in São Joaquim de Bicas, Minas Gerais, Brazil, named TGV-[Bi2], by determining its host range, complete nucleotide sequence and phylogenetic relationships with other begomoviruses. Biological characterization consisted of a host range study using either sap inoculation or particle bombardment as inoculation methods. The yellow spot virus can infect plants in Solanaceae and Amaranthaceae, including economically importat crops as sweet pepper, and weeds as Datura stramonium and Nicotiana silvestris. For the molecular characterization, the full-length genome (DNA-A and DNA-B) was amplified, cloned and completely sequenced. Sequence comparisons and phylogenetic analyses indicated that TGV-[Bi2] constitutes a novel begomovirus species named Tomato yellow spot virus (ToYSV), closely related to Sida mottle virus (SiMoV).


HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1073-1078 ◽  
Author(s):  
Zhong-Bin Wu ◽  
Hsin-Mei Ku ◽  
Yuh-Kun Chen ◽  
Chung-Jan Chang ◽  
Fuh-Jyh Jan

Pear plants (Pyrus pyrifolia var. Hengshen) showing symptoms of chlorotic spots on leaves were observed in orchards in central Taiwan in 2004. The sap of diseased leaves reacted positively to Apple chlorotic leaf spot virus (ACLSV) antiserum. A purified virus isolate (LTS1) from pear was characterized by host range, electron microscopy, phylogenetic analyses, serological property, and back-inoculation experiments to pear. Fifteen of 28 species of tested plants were susceptible to this virus after mechanical inoculation. Pathogenicity of ACLSV isolate LTS1 was verified by back-inoculating to pear seedlings. Filamentous virions of ≈12 × 750 nm were observed in the preparations of purified virus. Virus particles accumulated in the cytoplasm were observed in the ultrathin sections of LTS1-infected pear leaf tissue. Sequence analyses of the coat protein (CP) gene of LTS1 and the CP gene of LTS2, which originated from a distinct symptomatic pear sample, shared 81.4% to 92.6% nucleotide and 87.6% to 98.4% amino acid identities with those of the CP of 35 ACLSV isolates available in GenBank. ACLSV isolates were grouped into four clusters, i.e., Asia I, II, III, and Europe, and isolates LTS1 and LTS2 were classified as members of cluster Asia II and Asia I, respectively, based on phylogenetic data. Moreover, the variability of amino acid sequences of the CP gene of 37 ACLSV isolates showed geographically associated clustering in the phylogenetic tree. To our knowledge, this is the first study on the characterization of ACLSV causing the leaf chlorotic spot disease of pear in Taiwan. This study also provides the phylogenetic relationships among ACLSV populations based on amino acid sequences of CPs, which are correlated with their geographic origins.


2017 ◽  
Vol 162 (9) ◽  
pp. 2809-2814 ◽  
Author(s):  
Kuanyu Zheng ◽  
Tsung-Chi Chen ◽  
Shyi-Dong Yeh ◽  
Md. Siddiqur Rahman ◽  
Xiaoxia Su ◽  
...  

2011 ◽  
Vol 130 (3) ◽  
pp. 665-671 ◽  
Author(s):  
L.P. Wang ◽  
N. Hong ◽  
S. Matić ◽  
A. Myrta ◽  
Y.S. Song ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 467-467
Author(s):  
Victor K. Lin ◽  
Shih-Ya Wang ◽  
Claus G. Roehrbom

Sign in / Sign up

Export Citation Format

Share Document