scholarly journals Lack of negative influence on the cellular transcription factors NF-κB and AP-1 by the Nef protein of human immunodeficiency virus type 1

1999 ◽  
Vol 80 (11) ◽  
pp. 2951-2956 ◽  
Author(s):  
Keejung Yoon ◽  
Sunyoung Kim

In order to investigate the molecular mechanism of the reported negative effect of the Nef protein of human immunodeficiency virus type 1 (HIV-1) on the cellular transcription factors NF-κB and AP-1, human T cell lines (both populations and subclones) expressing the nef gene from HIV-1 clone pNL432 were constructed. Functional expression of the nef gene was confirmed by downregulation of CD4 and MHC class I proteins on the cell surface as measured by fluorescence-activated cell sorter analysis. However, contrary to previous reports, no significant difference was found in the induced level of NF-κB and AP-1 activity between nef + and nef − cell lines upon stimulation by phorbol 12-myristate 13-acetate and phytohaemagglutinin, as measured by transient transfection and electromobility shift assays. These data indicate that the Nef protein does not have a negative effect on the induction of NF-κB and AP-1.

Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4737-4745 ◽  
Author(s):  
G Furlini ◽  
M Vignoli ◽  
E Ramazzotti ◽  
MC Re ◽  
G Visani ◽  
...  

In human immunodeficiency virus type-1 (HIV-1) infected individuals, CD34+ hematopoietic stem/progenitor cells are profoundly impaired in their proliferation/differentiation capacities. The bulk of the available experimental evidence seems to indicate that hematopoietic progenitors are not susceptible to HIV-1 infection and their defects seem rather the consequence of direct or indirect negative influences of HIV-1-specific soluble proteins released by productively infected accessory cells. We have now shown that in the presence of a concurrent human herpesvirus-6 infection, two hematopoietic (TF-1 [erythromyeloid] and KG-1 [lymphomyeloid]) progenitor cell lines and human CD34+ hematopoietic progenitors isolated from the bone marrow of normal donors, became susceptible to HIV-1 infection and permissive to HIV-1 replication, although with a limited virus yield. These results suggest a further possible mechanism leading to hematopoietic derangement in HIV-1-infected subjects and may help to clarify the controversial issue of the susceptibility of human hematopoietic progenitors to HIV-1 infection.


2009 ◽  
Vol 83 (17) ◽  
pp. 8596-8603 ◽  
Author(s):  
Earl Stoddard ◽  
Houping Ni ◽  
Georgetta Cannon ◽  
Chunhui Zhou ◽  
Neville Kallenbach ◽  
...  

ABSTRACT The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.


2009 ◽  
Vol 83 (8) ◽  
pp. 3704-3718 ◽  
Author(s):  
Ramona Jochmann ◽  
Mathias Thurau ◽  
Susan Jung ◽  
Christian Hofmann ◽  
Elisabeth Naschberger ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) gene expression and replication are regulated by the promoter/enhancer located in the U3 region of the proviral 5′ long terminal repeat (LTR). The binding of cellular transcription factors to specific regulatory sites in the 5′ LTR is a key event in the replication cycle of HIV-1. Since transcriptional activity is regulated by the posttranslational modification of transcription factors with the monosaccharide O-linked N-acetyl-d-glucosamine (O-GlcNAc), we evaluated whether increased O-GlcNAcylation affects HIV-1 transcription. In the present study we demonstrate that treatment of HIV-1-infected lymphocytes with the O-GlcNAcylation-enhancing agent glucosamine (GlcN) repressed viral transcription in a dose-dependent manner. Overexpression of O-GlcNAc transferase (OGT), the sole known enzyme catalyzing the addition of O-GlcNAc to proteins, specifically inhibited the activity of the HIV-1 LTR promoter in different T-cell lines and in primary CD4+ T lymphocytes. Inhibition of HIV-1 LTR activity in infected T cells was most efficient (>95%) when OGT was recombinantly overexpressed prior to infection. O-GlcNAcylation of the transcription factor Sp1 and the presence of Sp1-binding sites in the LTR were found to be crucial for this inhibitory effect. From this study, we conclude that O-GlcNAcylation of Sp1 inhibits the activity of the HIV-1 LTR promoter. Modulation of Sp1 O-GlcNAcylation may play a role in the regulation of HIV-1 latency and activation and links viral replication to the glucose metabolism of the host cell. Hence, the establishment of a metabolic treatment might supplement the repertoire of antiretroviral therapies against AIDS.


Virology ◽  
1992 ◽  
Vol 191 (2) ◽  
pp. 960-963 ◽  
Author(s):  
Yasuko Tsunetsugu-Yokota ◽  
Shunji Matsuda ◽  
Midori Maekawat ◽  
Takashi Saito ◽  
Toshitada Takemori ◽  
...  

1994 ◽  
Vol 180 (4) ◽  
pp. 1283-1293 ◽  
Author(s):  
T J Tsomides ◽  
A Aldovini ◽  
R P Johnson ◽  
B D Walker ◽  
R A Young ◽  
...  

We have established long-term cultures of several cell lines stably and uniformly expressing human immunodeficiency virus type 1 (HIV-1) in order to (a) identify naturally processed HIV-1 peptides recognized by cytotoxic T lymphocytes (CTL) from HIV-1-seropositive individuals and (b) consider the hypothesis that naturally occurring epitope densities on HIV-infected cells may limit their lysis by CTL. Each of two A2-restricted CD8+ CTL specific for HIV-1 gag or reverse transcriptase (RT) recognized a single naturally processed HIV-1 peptide in trifluoroacetic acid (TFA) extracts of infected cells: gag 77-85 (SLYNTVATL) or RT 476-484 (ILKEPVHGV). Both processed peptides match the synthetic peptides that are optimally active in cytotoxicity assays and have the consensus motif described for A2-associated peptides. Their abundances were approximately 400 and approximately 12 molecules per infected Jurkat-A2 cell, respectively. Other synthetic HIV-1 peptides active at subnanomolar concentrations were not present in infected cells. Except for the antigen processing mutant line T2, HIV-infected HLA-A2+ cell lines were specifically lysed by both A2-restricted CTL, although infected Jurkat-A2 cells were lysed more poorly by RT-specific CTL than by gag-specific CTL, suggesting that low cell surface density of a natural peptide may limit the effectiveness of some HIV-specific CTL despite their vigorous activity against synthetic peptide-treated target cells.


2000 ◽  
Vol 38 (8) ◽  
pp. 3055-3060 ◽  
Author(s):  
Sabina Wünschmann ◽  
Jack T. Stapleton

Cell fusion induced by human immunodeficiency virus type 1 (HIV-1) is usually assessed by counting multinucleated giant cells (syncytia) visualized by light microscopy. Currently used methods do not allow quantification of syncytia, nor do they estimate the number of cells involved in cell fusion. We describe two fluorescence-based methods for the detection and quantification of HIV-1-induced in vitro syncytium formation. The lymphoblastoid cell lines MT-2 and SupT1 were infected with syncytium-inducing (SI) HIV-1 isolates. Syncytia were detected by DNA staining with propidium iodide using flow cytometry to determine cell size or by two-color cytoplasmic staining of infected cell populations by using fluorescence microscopy. Both methods were able to detect and quantify HIV-induced syncytia. The methods could distinguish between SI and non-SI HIV isolates and could be used with at least two separate types of CD4+ T-cell lines. Small syncytia can be readily identified by the two-color cytoplasmic staining method. Both methods were also shown to be useful for evaluating antiretroviral compounds, as demonstrated by the accurate assessment of HIV inhibition by azidothymidine (zidovudine), dideoxycytidine (zalcytibine), and hydroxyurea. These fluorescence-based assays allow a rapid and practical method for measuring HIV replication and anti-HIV activity of potential inhibitory compounds.


2006 ◽  
Vol 80 (4) ◽  
pp. 2051-2054 ◽  
Author(s):  
Sarah Sebastian ◽  
Elena Sokolskaja ◽  
Jeremy Luban

ABSTRACT Arsenic trioxide (As2O3) increased human immunodeficiency virus type 1 (HIV-1) infectivity when particular Homo sapiens and Cercopithecus aethiops cell lines were used as targets. Knockdown of human TRIM5α by RNA interference eliminated the As2O3 effect, demonstrating that the drug acts by modulating the activity of this retroviral restriction factor. In contrast, HIV-1 infectivity in target cell lines from other primate species (Cercopithecus tantalus, Macaca mulatta, and Aotus trivirgatus) was not increased by As2O3, despite the potent TRIM5-dependent HIV-1 restriction activity that these cells exhibit. To determine if As2O3 responsiveness is characteristic of particular TRIM5 orthologues and not others, TRIM5 cDNAs from these five primate species were transduced into cat fibroblasts, which lack endogenous HIV-1 restriction activity and, therefore, responsiveness to As2O3. In this context, the HIV-1 restriction activity conferred by all TRIM5 orthologues was largely eliminated by As2O3. The effect of As2O3 on HIV-1 restriction is thus shared by different TRIM5 orthologues but dependent on factors specific to the cell line in which TRIM5 is expressed.


2007 ◽  
Vol 81 (13) ◽  
pp. 7048-7060 ◽  
Author(s):  
Carsten Münk ◽  
Jörg Zielonka ◽  
Hannelore Constabel ◽  
Björn-Philipp Kloke ◽  
Benjamin Rengstl ◽  
...  

ABSTRACT The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity ∼10- to ∼40-fold.


2001 ◽  
Vol 75 (18) ◽  
pp. 8724-8732 ◽  
Author(s):  
James P. McGettigan ◽  
Satyam Sarma ◽  
Jan M. Orenstein ◽  
Roger J. Pomerantz ◽  
Matthias J. Schnell

ABSTRACT A replication-competent rhabdovirus-based vector expressing human immunodeficiency virus type 1 (HIV-1) Gag protein was characterized on human cell lines and analyzed for the induction of a cellular immune response in mice. We previously described a rabies virus (RV) vaccine strain-based vector expressing HIV-1 gp160. The recombinant RV was able to induce strong humoral and cellular immune responses against the HIV-1 envelope protein in mice (M. J. Schnell et al., Proc. Natl. Acad. Sci. USA 97:3544–3549, 2000; J. P. McGettigan et al., J. Virol. 75:4430–4434, 2001). Recent research suggests that the HIV-1 Gag protein is another important target for cell-mediated host immune defense. Here we show that HIV-1 Gag can efficiently be expressed by RV on both human and nonhuman cell lines. Infection of HeLa cells with recombinant RV expressing HIV-1 Gag resulted in efficient expression of HIV-1 precursor protein p55 as indicated by both immunostaining and Western blotting. Moreover, HIV-1 p24 antigen capture enzyme-linked immunosorbent assay and electron microscopy showed efficient release of HIV-1 virus-like particles in addition to bullet-shaped RV particles in the supernatants of the infected cells. To initially screen the immunogenicity of this new vaccine vector, BALB/c mice received a single vaccination with the recombinant RV expressing HIV-1 Gag. Immunized mice developed a vigorous CD8+ cytotoxic T-lymphocyte response against HIV-1 Gag. In addition, 26.8% of CD8+T cells from mice immunized with RV expressing HIV-1 Gag produced gamma interferon after challenge with a recombinant vaccinia virus expressing HIV-1 Gag. These results further confirm and extend the potency of RV-based vectors as a potential HIV-1 vaccine.


2000 ◽  
Vol 74 (14) ◽  
pp. 6377-6385 ◽  
Author(s):  
Peter Hug ◽  
Han-Ming Joseph Lin ◽  
Thomas Korte ◽  
Xiaodong Xiao ◽  
Dimiter S. Dimitrov ◽  
...  

ABSTRACT Treatment of human osteosarcoma cells, expressing CD4 and various chemokine receptors, with the glucosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), blocked target membrane glycosphingolipid (GSL) biosynthesis and reduced the susceptibility of cells to infection and fusion mediated by envelope glycoproteins from a variety of human immunodeficiency virus type 1 (HIV-1) isolates that utilize CXCR4 and/or CCR5. PPMP treatment of the cell lines did not significantly change the cell surface expression of CD4, CXCR4, and/or CCR5, nor did it alter the chemokine receptor association with CD4. PPMP-treated cells exhibited no changes in chemokine-induced Ca2+ mobilization and chemotaxis. However, massive envelope glycoprotein conformational changes triggered by CD4 and the appropriate chemokine receptor on the target membrane were inhibited when the target cells were treated with PPMP. Addition of various purified GSLs to PPMP-treated target cells showed that for all isolates tested, globotriaosylceramide (Gb3) was the most potent GSL in restoring the fusion susceptibility of target cells with cells expressing HIV-1 envelope glycoproteins; addition of the monosialoganglioside GM3 yielded a slight enhancement of fusion susceptibility. Our data are consistent with the notion that a limited number of specific GSL species serve as crucial elements in organizing gp120-gp41, CD4, and an appropriate chemokine receptor into a membrane fusion complex.


Sign in / Sign up

Export Citation Format

Share Document